\(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}-\dfrac{x-60}{56}-\dfrac{x-60}{55}-\dfrac{x-60}{54}=0\)
\(\Leftrightarrow x-60=0\)
hay x=60
Tìm x biết:
\(\dfrac{x+1}{58}+\dfrac{x+2}{57}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{57}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\left(\dfrac{x+1}{58}+1\right)+\left(\dfrac{x+2}{57}+1\right)=\left(\dfrac{x+3}{56}+1\right)+\left(\dfrac{x+4}{55}+1\right)\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
\(\Leftrightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{59}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\dfrac{x+1}{58}+1+\dfrac{x+2}{57}+1=\dfrac{x+3}{56}+1+\dfrac{x+4}{55}+1\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}=\dfrac{x+59}{56}+\dfrac{x+59}{55}\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
Mà \(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\ne0\)
\(\Rightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
Vậy: \(S=\left\{-59\right\}\)
Giải
\(\dfrac{x+1}{58}+\dfrac{x+2}{59}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
⇔\(\left(\dfrac{x+1}{58}+1\right)+\left(\dfrac{x+2}{57}+1\right)=\left(\dfrac{x+3}{56}+1\right)+\left(\dfrac{x+4}{55}+1\right)\)
⇔\(\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
⇔\(\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
⇔\(x+59=0\)
⇔\(x=-59\)
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\) giải pt
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(< =>\dfrac{x+1}{59}+1+\dfrac{x+3}{57}+1+\dfrac{x+5}{55}+1=\dfrac{x+7}{53}+1+\dfrac{x+9}{51}+1+\dfrac{x+11}{49}+1\)
\(< =>\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}=\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(< =>\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)=0\\ < =>x+60=0\\ < =>x=-60\)
Ta có : \(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(\Leftrightarrow\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}+3\text{=}\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}+3\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}\text{=}\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}-\dfrac{x+60}{53}-\dfrac{x+60}{51}-\dfrac{x-60}{49}\text{=}0\)
\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)\text{=}0\)
\(Do\) \(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\ne0\)
\(\Leftrightarrow\left(x+60\right)\text{=}0\)
\(x\text{=}-60\)
\(Vậy...\)
Giải phương trình
\(a,\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)
\(b,\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(c,3\left(x-1\right)+3=5x\)
\(d,\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(e,\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\)
\(f,\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
Em mới học về pt nên chưa quen lắm mọi người giúp e với ạ !Nguyễn Việt Lâm Quản lý
a) Ta có: \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90}{15}-\dfrac{5\left(1-2x\right)}{15}\)
\(\Leftrightarrow3x-9=90-5+10x\)
\(\Leftrightarrow3x-9=10x+85\)
\(\Leftrightarrow3x-10x=85+9\)
\(\Leftrightarrow-7x=94\)
hay \(x=-\dfrac{94}{7}\)
Vậy: \(S=\left\{-\dfrac{94}{7}\right\}\)
b) Ta có: \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(\Leftrightarrow\dfrac{2\left(3x-2\right)}{12}-\dfrac{60}{12}=\dfrac{3\left(3-2x-14\right)}{12}\)
\(\Leftrightarrow6x-4-60=9-6x-42\)
\(\Leftrightarrow6x-64=-6x-33\)
\(\Leftrightarrow6x+6x=-33+64\)
\(\Leftrightarrow12x=31\)
hay \(x=\dfrac{31}{12}\)
Vậy: \(S=\left\{\dfrac{31}{12}\right\}\)
c) Ta có: \(3\left(x-1\right)+3=5x\)
\(\Leftrightarrow3x-3+3=5x\)
\(\Leftrightarrow3x-5x=0\)
\(\Leftrightarrow-2x=0\)
hay x=0
Vậy: S={0}
d) Ta có: \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(\Leftrightarrow\dfrac{x+1}{100}+1+\dfrac{x+2}{99}+1=\dfrac{x+3}{98}+1+\dfrac{x+4}{97}+1\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)
\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)
mà \(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)
nên x+101=0
hay x=-101
Vậy: S={-101}
a) \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\\ \Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90-5\left(1-2x\right)}{15}\\ \Leftrightarrow3x-9=90-5+10x\\ \Leftrightarrow3x-10x=90-5+9\\ \Leftrightarrow-7x=94\\ \Leftrightarrow x=\dfrac{-94}{7}\)
Vậy \(x=\dfrac{-94}{7}\) là nghiệm của pt
b) \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\\ \Leftrightarrow\dfrac{2\left(3x-2\right)-60}{12}=\dfrac{9-6\left(x+7\right)}{12}\\ \Leftrightarrow6x-4-60=9-6x-42\\ \Leftrightarrow6x+6x=9-42+4+60\\ \Leftrightarrow12x=31\\ \Leftrightarrow x=\dfrac{31}{12}\)
Vậy \(x=\dfrac{31}{12}\) là nghiệm của pt
c) \(3\left(x-1\right)+3=5x\\ \Leftrightarrow3x+3+3=5x\\ \Leftrightarrow5x-3x=3+3\\ \Leftrightarrow2x=6\\ \Leftrightarrow x=3\)
Vậy x = 3 là nghiệm của pt
d) \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\\ \Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\\ \Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\\ \Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\\ \Leftrightarrow x+101=0\\ \Leftrightarrow x=-101\)
Vậy x = -101 là nghiệm của pt
e) \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\\ \Leftrightarrow\left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{53-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)=0\\ \Leftrightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}=0\\ \Leftrightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}\right)=0\\ \Leftrightarrow100-x=0\\ \Leftrightarrow x=100\)
Vậy x = 100 là nghiệm của pt
f) \(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\\ \Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\\ \Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\\ \Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\\ \Leftrightarrow x-100=0\\ \Leftrightarrow x=100\)
Vậy x = 100 là nghiệm của pt
e) Ta có: \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\)
\(\Leftrightarrow\dfrac{59-x}{41}+1+\dfrac{57-x}{43}+1+\dfrac{55-x}{45}+1+\dfrac{53-x}{47}+1=0\)
\(\Leftrightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}=0\)
\(\Leftrightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}\right)=0\)
mà \(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}>0\)
nên 100-x=0
hay x=100
Vậy: S={100}
f) Ta có: \(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
\(\Leftrightarrow\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)
\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)
mà \(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}>0\)
nên x-100=0
hay x=100
Vậy: S={100}
\(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
giải phương trình trên
Giải các phương trình sau :
a, \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
b, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
c, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
a, \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
\(\Leftrightarrow\left(\dfrac{59-x}{49}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{55-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)+\left(\dfrac{51-x}{49}+1\right)=0\)
\(\Leftrightarrow\dfrac{100-x}{45}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)
\(\Leftrightarrow\left(100-x\right).\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)
Mà \(\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
Vậy \(S=\left\{100\right\}\)
b, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)
\(\Leftrightarrow6x^2-5x+3=-7x+6x^2\)
\(\Leftrightarrow6x^2-5x+3+7x-6x^2=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Vậy \(S=\left\{\dfrac{-3}{2}\right\}\)
c,\(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
\(\Leftrightarrow\dfrac{10x-40}{20}-\dfrac{6+4x}{20}=\dfrac{20x}{20}+\dfrac{4-4x}{20}\)
\(\Leftrightarrow\dfrac{6x-46}{20}=\dfrac{16x+4}{20}\)
\(\Leftrightarrow6x-46=16x+4\)
\(\Leftrightarrow6x-46-16x-4=0\)
\(\Leftrightarrow-10x-50=0\)
\(\Leftrightarrow-10x=50\)
\(\Leftrightarrow x=-5\)
Vậy \(S=\left\{-5\right\}\)
\(\dfrac{x+1}{60}\)+\(\dfrac{x+2}{59}\)=\(\dfrac{x+3}{58}\)+\(\dfrac{x+4}{57}\)
Mọi người giúp mình với!!!
\(\dfrac{x+1}{60}+\dfrac{x+2}{59}=\dfrac{x+3}{58}+\dfrac{x+4}{57}\)
\(\Leftrightarrow\dfrac{x+1}{60}+1+\dfrac{x+2}{59}+1=\dfrac{x+3}{58}+1+\dfrac{x+4}{57}+1\)
\(\Leftrightarrow\dfrac{x+1+60}{60}+\dfrac{x+2+59}{59}=\dfrac{x+3+58}{58}+\dfrac{x+4+57}{57}\)
\(\Leftrightarrow\dfrac{x+61}{60}+\dfrac{x+61}{59}-\dfrac{x+61}{58}-\dfrac{x+61}{57}=0\)
\(\Leftrightarrow\left(x+61\right)\left(\dfrac{1}{60}+\dfrac{1}{59}-\dfrac{1}{58}-\dfrac{1}{57}\right)=0\)
\(\Leftrightarrow x+61=0\)
\(\Leftrightarrow x=-61\)
Tìm x:
a) \(\dfrac{-3}{7}\).x=\(\dfrac{3}{56}\).\(\dfrac{28}{9}\)
b) x-\(\dfrac{3}{16}\)=\(\dfrac{7}{15}\):\(\dfrac{3}{5}\)
c) \(\dfrac{2}{5}\)+\(\dfrac{1}{5}\).x=\(\dfrac{5}{6}\)
d) \(\dfrac{3}{4}\)x-\(\dfrac{2}{5}\)x=\(\dfrac{3}{7}\).\(\dfrac{1}{6}\)+\(\dfrac{5}{7}\).\(\dfrac{1}{6}\)
*Lưu ý: Trình bày chi tiết kết quả.
a)\(x=\left(\dfrac{3}{56}\cdot\dfrac{28}{9}\right):\dfrac{-3}{7}=\dfrac{1}{6}:\dfrac{-3}{7}=-\dfrac{7}{18}\)
b)\(x=\left(\dfrac{7}{15}\cdot\dfrac{5}{3}\right)+\dfrac{3}{16}=\dfrac{7}{9}+\dfrac{3}{16}=\dfrac{139}{144}\)
c)\(x=\left(\dfrac{5}{6}-\dfrac{2}{5}\right).5=\dfrac{13}{6}\)
d)\(=>x\left(\dfrac{3}{4}-\dfrac{2}{5}\right)=\dfrac{1}{6}\cdot\left(\dfrac{3}{7}+\dfrac{5}{7}\right)\)
\(x\cdot\dfrac{7}{20}=\dfrac{4}{21}=>x=\dfrac{4}{21}\cdot\dfrac{20}{7}=\dfrac{80}{147}\)