giải PT: 2x(x-1)+8-x=0
giải pt
(2x+1)(x+1)2(2x+3)-18=0
(x+2)(x+4)(x+6)(x+8)+6=0
1) Giải pt
a. x + 2 = 0
b. (x - 3) (2x + 8) = 0
2) Tìm đkxđ của pt : \(\dfrac{x}{x-5}\)- \(\dfrac{7}{2}\)= 0
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
1)
a) \(x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy S = {\(-2\)}
b) \(\left(x-3\right)\left(2x+8\right)=0\)
\(\Leftrightarrow x-3=0\) hoặc \(2x+8=0\)
*) \(x-3=0\)
\(\Leftrightarrow x=3\)
*) \(2x+8=0\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\)
Vậy S = \(\left\{-4;3\right\}\)
2) ĐKXĐ:
\(x-5\ne0\Leftrightarrow x\ne5\)
Giải PT sau
a) \(2x^2+20x+52=0\)
b) \(\dfrac{2x-19}{5x^2-5}-\dfrac{17}{x-1}=\dfrac{8}{1-x}\)
a) \(2x^2+20x+52=0\Rightarrow x^2+10x+26=0\Rightarrow\left(x+5\right)^2+1=0\)
\(\Rightarrow\) vô nghiệm
b) ĐK: \(x\ne1;-1\)
\(\dfrac{2x-19}{5x^2-5}-\dfrac{17}{x-1}=\dfrac{8}{1-x}\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{17}{x-1}+\dfrac{8}{x-1}=0\)
\(\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{9}{x-1}=0\Rightarrow\dfrac{2x-19-45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow-43x-64=0\Rightarrow x=-\dfrac{64}{43}\)
a) Ta có: \(\Delta'=100-104=-4< 0\)
Vậy phương trình vô nghiệm.
b) ĐKXĐ: \(x\ne1;x\ne-1\)
\(\Leftrightarrow\dfrac{2x-19}{5\left(x^2-1\right)}=\dfrac{17}{x-1}-\dfrac{8}{x-1}\)
\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{9}{x-1}\)
\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow2x-19=45x+45\)
\(\Leftrightarrow43x=-64\)
\(\Leftrightarrow x=-\dfrac{64}{43}\)(TM)
Vậy phương trình có nghiệm là: \(x=-\dfrac{64}{43}\)
Cho pt x²+2x-8=0 gọi x1;x2 là hai nghiệm của pt. Không giải pt mà tính. M=x1(1–x2)+x2(1–x1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-8\end{matrix}\right.\)
\(M=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1+x_2-2x_1x_2\)
\(=-2-2.\left(-8\right)=14\)
Giúp tớ với.
Bài 1 : cho pt : 4x^2 - 25 + k^2 + 4kx = 0
1. Giải pt với k =0
2. Giải pt với k = -3
3. Tìm các giá trị của k để pt nhận nghiệm là 2.
Bài 2 : Tính
1. x + 1/x-1 ( dấu / là phân số nhé ) - x-1/ x+1 = 16/x^2 - 1
2. 12/x^2-4 - x+1/x-2 + x+7/x+2 = 0
3. 12/8+x^3 = 1 + 1/1+2
4. x + 25/2x^2-50 - x+5/x^2-5x = 5-x/2x^2+10
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Giải pt:
\(x^{10}-x^6+x^2-2x+5=0\)
\(7x^8-x^5+x^2-x+3=0\)
Giải bất pt:
2x² - 8 >= 0
(x-2).(x+1)+x<=0
<=: bé hơn hoặc bằng
Bài 1:Giải pt: a) ( x-3)^3 + ( x+1)^3 = 8(x-1)^3
b) ( 2x^2 - 3x +1)(2x^2 + 5x +1)-9x^2 =0
a: Đặt x-3=a; x+1=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)
hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)