Chứng minh rằng: \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{70}>\dfrac{4}{3}\)
Cho \(A=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{70}\)
Chứng minh rằng : a) \(A>\dfrac{4}{3}\)
b) \(A< 2,5\)
bài này dài lắm đó bạn mk pít lm phần a nhưng k có thời gian
Cho \(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{70}\)
Chứng minh rằng : \(\dfrac{4}{3}< C< 2,5\)
Giúp mk vs ..............
Chứng minh rằng: \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dots+\dfrac{1}{20}< 1\)
Lời giải:
Ta có:
$\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}< \frac{1}{11}+\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}=\frac{10}{11}<1$
Ta có điều phải chứng minh
Chứng tỏ rằng: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}\)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{20}-\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\right)\)
\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\) (đpcm)
Cho S= \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
Chứng minh rằng: 1<S<2
Ta có: \(\dfrac{3}{10}>\dfrac{3}{15}\)
\(\dfrac{3}{11}>\dfrac{3}{15}\)
\(\dfrac{3}{12}>\dfrac{3}{15}\)
\(\dfrac{3}{13}>\dfrac{3}{15}\)
\(\dfrac{3}{14}>\dfrac{3}{15}\)
Do đó: \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}=1\)
hay 1<S(1)
Ta có: \(\dfrac{3}{11}< \dfrac{3}{10}\)
\(\dfrac{3}{12}< \dfrac{3}{10}\)
\(\dfrac{3}{13}< \dfrac{3}{10}\)
\(\dfrac{3}{14}< \dfrac{3}{10}\)
Do đó: \(\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}=\dfrac{12}{10}\)
\(\Leftrightarrow S< \dfrac{15}{10}=\dfrac{3}{2}< 2\)(2)
Từ (1) và (2) suy ra 1<S<2(đpcm)
Bạn làm hay quá
Chứng minh rằng P>3 biet P= \(\dfrac{5}{2×1}+\dfrac{4}{1×11}+\dfrac{3}{11×2}+\dfrac{1}{2×15}+\dfrac{13}{15×4}+\dfrac{15}{4×43}+\dfrac{13}{43×8}\)
\(\dfrac{5}{2x1}+\dfrac{4}{1x11}+\dfrac{3}{11x2}+\dfrac{1}{2x15}+\dfrac{13}{15x4}+\dfrac{15}{4x13}\)
=7x(\(\dfrac{5}{2x7}+\dfrac{4}{7x11}+\dfrac{3}{11x14}+\dfrac{1}{14x15}+\dfrac{13}{15x28}+\dfrac{15}{28x43}\))
=7x\(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}+\dfrac{1}{28}-\dfrac{1}{43}\)=7x(\(\dfrac{1}{2}-\dfrac{1}{43}\))
=7x\(\dfrac{41}{86}\)
=\(\dfrac{287}{86}\)
5/2x1+4/1x11+3/11x2+1/2x15+13/15x4+15/4x43=7x(5/2x7+4/7x11+3/11x14+1/14x15+13/15x28+15/28x43)=7x(1/2-1/7+1/7-1/11+1/11-1/14+1/14+1/15+1/15-1/28+1/28-1/43)=7x(1/2-1/43)=7x41/86=287/86
\(\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{13}\) + ... + \(\dfrac{1}{70}\)
Chứng minh rắng:
\(\dfrac{1}{11}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{13}\)+....+\(\dfrac{1}{70}\) < 2,5
So sánh :
a) Chứng minh rằng : M = \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.......+\dfrac{1}{100!} \)
Chứng minh rằng : M <1 .
b) Chứng minh rằng : N = \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+........+\dfrac{9}{1000!}\)
Chứng minh rằng : N < \(\dfrac{1}{9!}\)
a, Ta có :
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)