Giá trị của bt: \(\frac{x-y}{x+y}\)biết x2-2y2=xy và xy\(\ne\)0
Help!!!!!!
Tính giá trị của phân thức A = x - y x + y biết x 2 - 2 y 2 = x y (y ≠ 0; x + y ≠ 0)
Tính giá trị biểu thức P= x-y/x+y . Biết x2 _ 2y2 = xy ( x+y khác 0 , y khác 0 )
Bạn tham khảo bài này nha
Link:https://olm.vn/hoi-dap/detail/266831819020.html
Chúc bạn học tốt
b) Tính giá trị biểu thức A = (x−y)(x2−xy)−x(x2+2y2) tại x=2;y=−3
\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)
\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)
\(=-2x^2y-xy^2\)
\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)
\(=8\cdot3-2\cdot9\)
=6
Rút gọn và tính giá trị biểu thức sau:
P=[{x-y/2y-x-x2+y2+y-2/x2-xy-2y2}:4x4+4x2y+y2-4/x2+y+xy+x]
LƯU Ý:đây là phân thức đại số nhé
(Đề thi học sinh giỏi toán cấp 2, Miền Bắc năm 1963)
Rút gọn và tính giá trị của biểu thức sau tại x = -1,76 và y = 3/25;
P = x - y 2 y - x - x 2 + y 2 + y - 2 x 2 - x y - 2 y 2 : 4 x 2 + 4 x 2 y + y 2 - 4 x 2 + y + x y + x : x + 1 2 x 2 + y + 2
Cho các số thực x, y dương và thỏa mãn log 2 x 2 + y 2 3 xy + x 2 + 2 log 2 x 2 + 2 y 2 + 1 ≤ log 2 8 xy .Tìm giá trị nhỏ nhất của biểu thức P = 2 x 2 - xy + 2 y 2 2 xy - y 2 .
Tính giá trị của biểu thức, biết: \(\frac{x^2-y^2}{x^2+xy}=\frac{x-y}{x}\) với x ≠ -y, x ≠ 0.
\(\dfrac{x^2-y^2}{x^2+xy}=\dfrac{x-y}{x}\)
\(\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+xy}=\dfrac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)
\(\Leftrightarrow x^2+xy=x\left(x+y\right)\)
\(\Leftrightarrow x\left(x+y\right)=x\left(x+y\right)\)( luôn đúng )
Vậy x; y đúng với x; y khác 0
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy\(\ne\)1. Tìm giá trị lớn nhất của M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
Tính giá trị của đa thức B= x2+ xy-x+y+2018 biết x+y-2=0
B=x(x+y)-x+y+2018
=2x-x+y+2018
=x+y+2018=2020