cho x2+y2. chứng minh các biểu thức sau ko phụ thuộc vào x,y
A= 2(x6+y6) -3(x4+y4)
B=2x4-y4+ x2y2+3y2
Chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a) y.(x2-y2).(x2+y2)-y.(x4-y4)
b) (\(\dfrac{1}{3}\)+2x).(4x2-\(\dfrac{2}{3}\)x+\(\dfrac{1}{9}\))-(8x3-\(\dfrac{1}{27}\))
c) (x-1)3-(x-1).(x2+x+1)-3.(1-x).x
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
1. Cho x+y+z=0. Chứng minh rằng: (x2+y2+z2)2=2(x4+y4+z4)
2. Cho x2-y2=1. Tính giá trị biểu thức: A=2(x6-y6)-3(x4+y4)
3. Phân tích thành nhân tử: (x-3)(x-1)(x+1)(x+3)+15
4. Với n thuộc N, n>1
Chứng minh: a) 20n-1
b) 1000n+1
là các hợp số
Bài 3:
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-9\right)\left(x^2-1\right)+15\)
\(=x^4-10x^2+9+15\)
\(=x^4-10x^2+24\)
\(=\left(x^2-4\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
Cho x, y là hai số thỏa mãn x2 - y2 = 2
Vậy giá trị của biểu thức A = 2.(x6 - y6) - 6.( x4 + y4) là?
Ta có : \(x2-y2=2\Rightarrow\left(x-y\right)2=2\Rightarrow x-y=1\)
\(A=2\left(x6-y6\right)-6\left(x4+y4\right)\)
\(\Rightarrow2\left[\left(x-y\right)6\right]-6\left[\left(x+y\right)4\right]\)
Mà \(x-y=1\Rightarrow A=2.6-6\left[\left(x+y\right)4\right]\)
\(\Rightarrow A=6\left[2-\left(x+y\right)4\right]\)
\(\Rightarrow A=6\left[2-4x-4y\right]=6\left[2-4\left(x-y\right)\right]\)
\(\Rightarrow A=6\left[2-4.1\right]=6.\left[2-4\right]=6.\left(-2\right)=-12\)
Vậy A = -12
bài 4:phân tích mỗi đa thức sau thành nhân tích
a, 83 yz + 122yz + 6xyz + yz
b,81x4(z2 - y2) - z2 + y2
c,\(\dfrac{x^3}{8}\) - \(\dfrac{y^3}{27}\) +\(\dfrac{x}{2}\) - \(\dfrac{y}{3}\)
d, x6 + x4 + x2 y2 + y4 - y6
a, \(8^3yz+12^2yz+6xyz+yz\)
\(=512yz+144yz+6xyz+yz\)
\(=yz\left(512+14+6x+1\right)\)
\(=yz\left(527+6x\right)\)
$---$
b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)
\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)
\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)
\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)
$---$
c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)
\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)
$---$
d, \(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)
$Toru$
Giá trị của đa thức tại xy - x2 y2 + x3 y3 - x4 y4 + x5 y5 - x6 y6 tại x = -1; y = 1 là:
(A) 0;
(B) -1;
(C) 1;
(D) -6
Hãy chọn phương án đúng.
Khi x = - 1; y = 1 thì xy = (-1).1= -1
Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6
= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6
= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6
= -1 – 1 + (-1) – 1 + (-1) – 1
= - 6
Chọn đáp án D
B2: Rút gọn biểu thức sau:
a, (x + 3)2 - x(3x + 1)2 + (2x + 1)(4x2 -2x +1)=28
c, ( x2 - 1) - (x4 + x2 + 1)(x2 - 1) = 0
B3: Tính giá trị của biểu thức:
a, ( x - 1)(x -2)(1 + x + x2)(4 + 2x + x2) với x = 1
b, (x - 1)3 - 4x(x + 1)(x - 1) + 3(x - 1)(x2 + x + 1) với x= -2
B5: C/m biểu thức sau ko phụ thuộc vào giá trị của biến:
y(x2 - y2)(x2 + y2) - y(x4 - y4)
Giúp mình vs tuần sau jk học r T.T
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) x2 + y2 ≥ (x + y)2/2
b) x3 + y3 ≥ (x + y)3/4
c) x4 + y4 ≥ (x + y)4/8
d) x2 + y2 + z2 ≥ xy + yz + zx
e) x2 + y2 + z2 ≥ (x + y + z)2/3
f) x3 + y3 + z3 ≥ 3xyz
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Cho x2+y2=1. Hãy tính giá trị biểu thức M=2x4 + 3x2y2 +y4 +y2
\(M=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=\left(x^2+y^2\right)\left(2x^2+y^2\right)+y^2\)
\(=2x^2+2y^2=2\)
\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\\ =2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\\ =2x^2.1+y^2+y^2=2\left(x^2+y^2\right)=2.1=2\)
cho x+y+z=0. chứng minh 2(x4+y4+z4)=(x2+y2+z2)2
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào
\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Ta có
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)
Bình phương 2 vế của (1)
\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)
Do x+y+z=0 nên
\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)
Thay (3) vào (2)
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)