CMR:
a. n+6 chia hết cho n-5
b. 2n-7 chia hêt cho n-7
c. 3n+4 chia hết cho n+5
a. n+6 chia hết cho n-5
b. 2n-7 chia hêt cho n-7
c. 3n+4 chia hết cho n+5
a.
n + 6 chia hết cho n - 5
=> n - 5 + 11 chia hết cho n - 5
=> 11 chia hết cho n - 5
=> n - 5 thuộc Ư(11) = {-11; -1; 1; 11}
=> n thuộc {-6; 4; 6; 16}
b.2n-7=n-7xn-7
mà n-7 chia hết cho n-7
suy ra 2n-7chia hết cho n-7
a) đặt tính chia:
\(\frac{n+6}{n-5}=\frac{n-5+11}{n-5}=1+\frac{11}{n-5}\)
để n+6 chia hết cho n-5 thì n-5 phải thuộc ước của 11
suy ra n-5 thuộc -11;-1;1;11
suy ra n thuộc -6;4;6;16
b)đặt tính chia:
\(\frac{2n-7}{n-7}=\frac{2n-14+7}{n-7}=2+\frac{7}{n-7}\)
để 2n-7 chia hết cho n-7 thì n-7 phải thuộc ước của 7
suy ra n-7 thuộc -7;-1;1;7
suy ra n thuộc 0;6;8;14
c)đặt tính chia -_-
\(\frac{3n+4}{n+5}=\frac{3n+15-11}{n+5}=3-\frac{11}{n+5}\)
để 3n+4 chia hết cho n+5 thì n+5 phải thuộc ước của 11
suy ra n+5 thuộc -11;-1;1;11
suy ra n thuộc -16;-6;-4;6
------------------
k cho mình nhé ^^
Tìm n thuộc N:
1) 3n + 5 chia hết cho n - 4
2) 6n + 7 chia hết cho 3n - 1
3) 4n + 8 chia hết cho 3n - 2
4) 2n - 7 chia hết cho n + 2
5) 3n - 4 chia hết cho 3 - n
6) 2n - 5 chia hết cho n + 1
7) 3n - 7 chia hết cho 2n + 3
8) n - 5 chia hết cho n - 1
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
1. 2n-7 chia hêt cho n-7
2. 3n+4 chia hết cho n+5
1.\(\frac{2n-7}{n-7}=\frac{2n-14}{n-7}+\frac{7}{n-7}=2+\frac{7}{n-7}\)
để 2n-7 chia hết cho n-7 thì n-7 phải thuộc ước của 7
suy ra n-7 thuộc -7;-1;1;7
suy ra n thuộc 0;6;8;14
2.\(\frac{3n+4}{n+5}=\frac{3n+15}{n+5}+\frac{-11}{n+5}=3-\frac{11}{n+5}\)
để 3n+4 chia hết cho n+5 thì n+5 phải thuộc ước của 11
suy ra n+5 thuộc -11;-1;1;11
suy ra n thuộc -16;-6;-4;6
nhớ k cho mình nhé ^^
mình ấn nhầm cho dũng rồi , cách làm như sau nha:
1, ĐK: n-7 khác 0 suy ra n khác 7
ta có 2n-7= 2n-14+7=2.(n-7) +7
vì 2(n-7) chia hết cho n-7 nên để 2n-7 chia hết cho n-7 thì n-7 phải thuộc ước của 7 ước của 7 là -1,1.7,-7
mà n khác 7 nên ta có
n-7=1 suy ra n=8
n-7=-7 suy ra n= 0
n-7=-1 suy ra n= 6
ở ý 2 cũng làm tương tự nhé chỉ có ĐK là n+5 khác 0 suy ra n khác -5
3n +4= 3n+15-10 = 3(n+5)-10 n thuộc ước của 10 và phải khác -5 nhé. mình nha mình thử rồi đúng mà, chúc bạn thành công!
tk nha nha nha cảm ơn !
Đinh dũng sai rồi nhé. nhungpham làm mới đúng
1. Tìm n
a) n+4 chia hết cho n
b) 3n+7 chia hết cho n
c) 27- 5n chia hết cho n
d) n+6 chia hết cho n+2
e) 2n+3 chia hết cho n-2
f) 3n+1 chia hết cho 2n
2. Tìm n thuộc N*
A) 2+4+6+8+.....+2n = 210
B) 1+3+5+.....+(2n-1) =225
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
1.Tìm số tự nhiên sao cho:
a, 2n + 7 chia hết cho n+1
b, 2n + 1 chia hết cho 6 - n
c, 3n chia hết cho 5 - 2n
d, 3n chia hết cho 2n + 6
e,n+3 chia hết cho n - 1
f,4n + 3 chia hết cho 2n - 1
2. CMR: 1 số đc ghi bởi 6 chữ số giống nhau ( VD: 777777) thì chia hết cho 37037
Tìm n thuộc N để:
a) n + 6 chia hết cho n
b) n + 5 chia hết cho n + 1
c) n2 + 2n + 7 chia hết cho n + 2
d) 2n + 1 chia hết cho 16 - 3n
e) 3n + 2 chia hết cho n - 1
f) 3n + 4 chia hết cho n - 1
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
b) n + 5 chia hết cho n + 1
=> (n + 1) + 4 chia hết cho n+ 1
Mà n + 1 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 \(\in\){-1;1;-5;5}
=> n \(\in\){-2;0;-6;4}
Mà n thuộc N
=> n \(\in\){0;4}
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
tìm n thuộc N :
a) n+2 chia hết cho n-1
b) 2n+7 chia hết cho n+1
c) 2n+1 chia hết cho 6-n
d) 3n chia hết cho 5- 2n
e) 4n + 3 chia hết cho 2n+6
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
tìm số tự nhiên n sao cho:
a) n+2 chia hết cho n-1
b)2n+7 chia hết cho n+1
c)2n+1 chia hết cho 6-n
d)3n chia hết cho 5-2n
e)4n+3 chia hết cho 2n+6
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
a) n+2 chia hết cho n-1
=>n-1+3 chia hết cho n-1
=>3 chia hết cho n-1
b)2n+7 chia hết cho n+1
=>2(n+1)+5 chia hết cho n+1
=>5 chia hết cho n+1
c) 2n+1 chia hết cho 6-n
=>2(6-n)+13 chia hết cho 6-n
13 chia hết cho 6-n ( bài này không chắc )
d) 3n chia hết cho 5-2n ( ko bt làm )
e) 4n+3 chia hết cho 2n+6
=>4n+3 chia hết cho 4n+12 ( vô lí )