Tìm giá trị của x để B=\(\frac{8-x}{x-3}\) bé nhất
Tìm giá trị ngyên của biến x để biểu thức
a) \(A=\frac{2}{6-x}\)có giá trị lớn nhât
b) \(B=\frac{8-x}{x-3}\)có giá trị bé nhất
cho biểu thức: P=\(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)(với \(x\ne2\);\(x\ne0\))
a) rút gọn P
b) tìm các giá trị của x để P có giá trị bé nhấ. tìm giá trị bé nhất đó.
?????????????????????????????????????????????????????????????????
Tìm giá trị nguyên của biến x để biểu thức \(B=\frac{8-x}{x-3}\)có giá trị nhỏ nhất
-Để B có giá trị nhỏ nhất thì 8-x lớn nhất và x-3 nhỏ nhất
+) Để 8-x lớn nhất thì x nhỏ nhất => x=0
Thay vào ta có \(\frac{8-0}{0-3}=\frac{8}{-3}\)
Vậy x=0
Tìm giá trị nguyên của biến x để biểu thức B=\(\frac{8-x}{x-3}\) có giá trị lớn nhất
Cho biểu thức\(B=2x+\frac{8}{x-3}-5\)
a>Tìm giá trị nhỏ nhất của biểu thức B.
b>Tìm giá trị của x để bểu thức B có giá trị nhỏ nhất.
Đề không cho gì hết nên ta xét 2 trường hợp.
Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.
Trường hợp 2: \(x\ge0\) thì ta thấy \(x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.
Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN
Đề không cho gì hết nên ta xét 2 trường hợp.
Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.
Trường hợp 2: \(x\ge0\) thì ta thấy \(3>x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.
Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN
tìm x thuộc z để
B=(27-2x)/(12-x) đạt giá trị lớn nhất
A=(7-x)/(x-5) đạt giá trị bé nhất
C=(7x-8)/(2n-3) đạtgiá trị lớn nhất
a)B=[3+2(12-x)]/(12-x)=2+3/(12-x)
B lớn nhất =2+3=5 khi x=11
b) A=2-(x-5)/(x-5)=2/(x-5)-1=-2-1=-3 khi x=4
c)---> chịu
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất.
a)B=\(\frac{7-x}{x-5}\)
b) C=\(\frac{5x-19}{x-4}\)
2. Tìm số tự nhiên n để p/s\(\frac{7n-8}{2n-3}\)có giá trị lớn nhất
\(B=\left(1-\frac{x^2}{x+2}\right)\cdot\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
a, Tìm điều kiện của x để giá trị của biểu thức B được xác định
b,Rút gọn biểu thức B
c,Tính giá trị của B khi x=-3
d, Tìm giá trị của x để biểu thức B có giá trị lớn nhất. Tìm giá trị lớn nhất đó
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
Tìm các giá trị nguyên của x để A=\(\frac{8-x}{x-3}\)đạt giá trị nhỏ nhất
8−xx−3=−(x−8)x−3=−(x−3)+5x−3=−1+5x−3" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:table-cell !important; float:none; font-size:15.82px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:18.131em; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:center; white-space:nowrap; width:10000em; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml mjx-full-width">
8−xx−3⇔B=8−22−3=−6" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.82px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
Vậy B = -6 tại x = 2.
chết vậy B= -6 x=2
đổi lại Vậy A = -6 tại x = 2.
Câu 1:
Để A>1 thì \(\dfrac{x+5}{x+8}-1>0\)
=>-3/x+8>0
=>x+8<0
hay x<-8