Tìm GTNN của A=\(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|\)
Tìm GTNN của biểu thức sau :
A=\(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|+2018\)
Với mọi x ta có :
\(\left|x+50\right|=\left|-x-50\right|\)
\(\Leftrightarrow\left|x+8\right|+\left|x+50\right|=\left|x+8\right|+\left|-50-x\right|\)
\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge\left|\left(x+8\right)+\left(-x-50\right)\right|\)
\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge42\)
Mà \(\left|x+13\right|\ge0\)
\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|+\left|x+13\right|+2018\ge2060\)
\(\Leftrightarrow A\ge2060\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+8\right)\left(-x-50\right)\ge0\left(1\right)\\\left|x+13\right|=0\left(2\right)\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+8\ge0\\-x-50\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+8\le0\\-x-50\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-8\\-50\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-8\\-50\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-50\le x\le-8\end{matrix}\right.\)
\(\Leftrightarrow-50\le x\le-8\left(I\right)\)
Từ \(\left(2\right)\Leftrightarrow x+13=0\)
\(\Leftrightarrow x=-13\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow A_{Min}=2060\Leftrightarrow x=-13\)
Tìm GTNN của biểu thức:
a) \(\left|x+5\right|+\left|x+17\right|\)
b) \(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|\)
c) \(\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
d) \(\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|
A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5
Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| \(\ge\) 42
Vậy MinB = 42 khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|
\(\ge\) |x+5+7-x| + |x+2+8-x|
\(\ge\) |12| + |10|
\(\ge\) 12 + 10 \(\ge\) 22
Vậy MinC = 22 khi và chỉ khi :
-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7
d) D = |x+3|+|x−2|+|x−5|
Giải
D = |x+3|+|x−2|+|x−5|
\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|
A = |-x-5|+|x+17| ≥ |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 ≤ x ≤ -5
Vậy MinA=12 khi - 17 ≤ x ≤ -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| ≥ (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| ≥≥42
Vậy MinB = 42 khi và chỉ khi:
x+8 ≥ 0 ⇒x ≥ −8
x+13 = 0 => x = −13 .Vậy x=-13
x+50 ≥ 0 => x ≥ −50
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
=> |x+5| + |x+2| + |7-x| + |8-x|
≥ |x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22
Vậy MinC = 22 khi và chỉ khi :
-5 ≤ x ≤ 8 và -2 ≤ x ≤ 7 ⇔ -2 ≤ x ≤ 7
Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| ≥≥ |x+5+x+17|
A = |-x-5|+|x+17| ≥≥ |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 ≤≤ x ≤≤ -5
Vậy MinA=12 khi - 17 ≤≤ x ≤≤ -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| ≥≥ (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| ≥≥ 42
Vậy MinB = 42 khi và chỉ khi:
⎧⎪⎨⎪⎩x+8≥0x+13=0x+50≥0{x+8≥0x+13=0x+50≥0 ⇒⎧⎪⎨⎪⎩x≥−8x=−13x≥−50⇒{x≥−8x=−13x≥−50 ⇒x=−13⇒x=−13
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|
≥≥ |x+5+7-x| + |x+2+8-x|
≥≥ |12| + |10|
≥≥ 12 + 10 ≥≥ 22
Vậy MinC = 22 khi và chỉ khi :
-5 ≤≤ x ≤≤ 8 và -2 x ≤≤ 7 ⇔⇔ -2 ≤≤ x ≤≤ 7
d) D = |x+3|+|x−2|+|x−5|
Giải
D = |x+3|+|x−2|+|x−5|
≥≥ ( |x+3|+|5-x| ) + |x-2| ≥≥ | x+3+5-x | + | x-2 | ≥≥ | 8 | + | x-2 | ≥≥ 8 + | x-2 | ≥≥ 8 Vậy MinD = 8 khi và chỉ khi: ⎧⎪⎨⎪⎩x+3≥0x−2=05−x≥0{x+3≥0x−2=05−x≥0 ⇒⎧⎪⎨⎪⎩x≥−3x=2x≤5⇒{x≥−3x=2x≤5 ⇒x=2
Tìm gtnn của biểu thức
\(A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
Ta có tính chất :
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)
\(\rightarrow A\ge\left|4x-8\right|\)
Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :
\(\rightarrow A\ge0\forall x\in R\)
Dấu "= " xảy ra khi :
\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{min}=0\Leftrightarrow x=2\)
Bài 1 : Tìm GTNN của : \(A=\left|x+8\right|+\left|2x+7\right|+\left|3x+6\right|+\left|4x-7\right|+\left|3x-6\right|+\left|2x-7\right|+\left|x-8\right|-100\)
Bài 1 : Tìm GTNN của : \(A=\left|x+8\right|+\left|2x+7\right|+\left|3x+6\right|+\left|4x-7\right|+\left|3x-6\right|+\left|2x-7\right|+\left|x-8\right|-100\)
tìm GTNN của biểu thức: A= \(\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)
\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)
\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)
Tìm GTNN của biểu thức:
\(f\left(x\right)=\left(x-1\right)\left(x+6\sqrt{x}+8\right)\left(x\ge0\right)\)
\(\left(x-1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+4\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+4\right)\)
\(=\left(x+3\sqrt{x}-4\right)\left(x+3\sqrt{x}+2\right)=\left(x+3\sqrt{x}-1\right)^2-3^2\ge-9\)
Dấu "=" xảy ra \(\Leftrightarrow x+3\sqrt{x}-1=0\Leftrightarrow\left(\sqrt{x}+\frac{3}{2}\right)^2-\frac{13}{4}=0\)
Tự giải tiếp
\(x\ge0\Rightarrow f\left(x\right)\ge-1.8=-8\)
Vậy GTNN của f(x) là -8 tại x=0
Tìm GTNN của: A=\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2002\)
B=\(\left(x-1\right)^2+\left(x-3\right)^2\)
C= \(x^2-2x+y^2+7-4y\)
D= \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
Đặt \(x^2-9x+14=y\)
\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)
\(\Leftrightarrow A=y^2-36+2002\)
\(\Leftrightarrow A=y^2+1966\ge1966\)
Dấu "=" xảy ra khi
\(x^2-9x+14=0\)
\(\Leftrightarrow x=2,7\)
\(\text{Tìm x, biết:}\)
\(a\)) \(\left(19x+2.5^2\right):14=\left(13-8\right)^2-4^2\)
\(b\)) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(c\)) \(11-\left(-53+x\right)=97\)
\(d\)) \(-\left(x+84\right)+213=-16\)