Những câu hỏi liên quan
KP
Xem chi tiết
KP
8 tháng 6 2016 lúc 21:05
co ai bt giai cau nay hk???
Bình luận (0)
TN
8 tháng 6 2016 lúc 21:10

a)dùng vi ét

b)x=-1.19640820980616,

x=1.44426494345719;

Bình luận (0)
H24
Xem chi tiết
KP
Xem chi tiết
PQ
28 tháng 5 2019 lúc 10:33

pt \(x^2-2x+m=0\) (1) có \(\Delta'=\left(-1\right)^2-m=1-m\)

Để pt có hai nghiệm phân biệt x1, xthì \(\Delta'>0\)\(\Leftrightarrow\)\(m< 1\)

Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=1\)\(\Leftrightarrow\)\(\frac{x_1^2+x_2^2}{x_1^2x_2^2}=1\)\(\Leftrightarrow\)\(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=1\) (*) 

Theo Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)

(*) \(\Leftrightarrow\)\(\frac{2^2-2m}{m^2}=1\)\(\Leftrightarrow\)\(m^2+2m-4=0\) (2) 

pt (2) có \(\Delta'=1^2-\left(-4\right)=5>0\)\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\hept{\begin{cases}m_1=-1+\sqrt{5}\left(loai\right)\\m_2=-1-\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy để \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=1\) thì \(m=-1-\sqrt{5}\)

Bình luận (0)
TD
Xem chi tiết
KP
Xem chi tiết
H24
4 tháng 7 2020 lúc 9:17

Ta có : \(x^2-6x+2m+1=0\left(a=1;b=-6;c=2m+1\right)\)

\(\Delta=\left(-6\right)^2-4\left(2m+1\right)=36-8m-4=32-8m\)

Để phương trình có 2 nghiệm phân biệt \(32-8m>0\)hay \(\Delta>0\)

\(\Leftrightarrow8m>32\Leftrightarrow m< 4\)

Áp dụng hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{6}{1}=6\\P=x_1x_2=\frac{c}{a}=\frac{2m+1}{1}=2m+1\end{cases}}\)(*)

Theo bài ra ta cớ : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\)Tự thay vào làm nốt nhé ! 

Bình luận (0)
 Khách vãng lai đã xóa
PN
4 tháng 7 2020 lúc 9:50

bạn làm sai phần tìm đk m rồi nhé 

Để phương trình có 2 nghiệm : \(\Delta>0\)

\(< =>32-8m>0\)

\(< =>m>\frac{-32}{-8}=4\)

Theo viet \(\hept{\begin{cases}x_1x_2=2m+1\\x_1+x_2=6\end{cases}}\)

Khi đó : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\)

\(< =>\frac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=8\)

\(< =>8\left(2m+1\right)^2+2x_1x_2=x_1^2+x_2^2+2x_1x_2\)

\(< =>8\left(4m^2+4m+1\right)+2\left(2m+1\right)=\left(x_1+x_2\right)^2\)

\(< =>24m^2+24m+8+4m+2=36\)

\(< =>24m^2+28m-26=0\)

\(< =>\orbr{\begin{cases}m=\frac{-7+\sqrt{205}}{12}< 4\\m=\frac{-7-\sqrt{205}}{12}< 4\end{cases}}\left(ktmđk:m>4\right)\)

Vậy không có giá trị nào m thỏa mãn đẳng thức trên

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
H24
20 tháng 5 2019 lúc 21:26

Trả lời: 

       Sorry, mk ms lớp 7,ko làm đc lớp 9!

Bình luận (0)
JD
20 tháng 5 2019 lúc 21:41

-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm

-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0

- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)

\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)

Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho

Bình luận (0)
LH
Xem chi tiết
H24
14 tháng 1 2018 lúc 20:36

viet dc k bạn

Bình luận (0)
NT
2 tháng 4 2018 lúc 17:33

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

Bình luận (0)
H24
2 tháng 4 2018 lúc 17:43

\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)   \(\left(#\right)\)

từ pt \(\left(#\right)\) ta có  \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)

\(\Delta'=m^2-4m+4-m^2-2m+3\)

\(\Delta'=-6m+7\)

để pt  \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)

\(\Leftrightarrow-6m+7>0\)

\(\Leftrightarrow-6m>-7\)

\(\Leftrightarrow m< \frac{7}{6}\)

theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)

theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)

\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)  ta có \(m=2\)  ( KTM ) 

từ \(\left(2\right)\) ta có \(m^2+2m-8=0\)  \(\left(3\right)\)

từ pt \(\left(3\right)\)  ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)

vì \(\Delta'>0\)  nên pt \(\left(3\right)\)  có 2 nghiệm phân biệt \(m_1=-2+3=1\)  ;  ( TM ) 

 \(m_2=-2-3=-5\)  ( TM ) 

vậy \(m_1=-5;m_2=1\)  là các giá trị cần tìm

Bình luận (0)
LH
Xem chi tiết
H24
16 tháng 3 2023 lúc 22:32

\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x\left(x+1\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

Ta có : `(x-1)/x -1/(x+1) =(2x-1)/(x(x+1))`

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)

`=> x^2 +x -x-1 -x-2x+1=0`

`<=> x^2 -3x =0`

`<=> x(x-3)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\end{matrix}\right.\)

__

`(x+2)(5-3x)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\5-3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)

__

\(\dfrac{5\left(1-2x\right)}{3}+\dfrac{x}{2}=\dfrac{3\left(x-5\right)}{4}-2\)

\(\Leftrightarrow\dfrac{20\left(1-2x\right)}{12}+\dfrac{6x}{12}=\dfrac{9\left(x-5\right)}{12}-\dfrac{24}{12}\)

`<=> 2x- 40x + 6x = 9x - 45 -24`

`<=>  2x- 40x + 6x-9x + 45 +24=0`

`<=>-41x+69=0`

`<=>-41x=-69`

`<=> x=69/41`

Bình luận (0)
H24
16 tháng 3 2023 lúc 22:02

Cậu tách 2 câu 1 lượt mn trl nhanh hơn đó ạ

Bình luận (1)
NT
16 tháng 3 2023 lúc 22:03

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

Bình luận (1)
TN
Xem chi tiết
NL
16 tháng 5 2019 lúc 12:03

\(\Delta'=2-m\ge0\Rightarrow m\le2\)

Kết hợp Viet và điều kiện đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)

Mặt khác ta có \(x_1x_2=m-1\Rightarrow m-1=-35\Rightarrow m=-34\)

\(\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=m-1+\frac{1}{m-1}+2=\frac{m^2}{m-1}\end{matrix}\right.\) (\(m\ne1\))

Theo Viet đảo, \(y_1;y_2\) là nghiệm của:

\(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}\Leftrightarrow\left(m-1\right)y^2+2my+m^2=0\) \(\left(m\ne1\right)\)

Bình luận (0)
DH
Xem chi tiết
NH
18 tháng 6 2015 lúc 14:42

bài 1: pt (2) hình như có vấn đề

b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)

=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6 

bài 2: ĐK: x >0 và x khác 1

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)

b)  ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min

c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)

để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)

\(\sqrt{x}-1\)1-12-2
x4(t/m)0(k t/m)9(t/m)PTVN

 

=> x thuộc (4;9)

bìa 3: câu này bạn đăng riêng mình làm rồi đó

 

Bình luận (0)