Qua điểm P nằm trong ΔABC, kẻ đường thẳng cắt các cạnh AB,AC lần lượt tại M,N. Gọi \(S_1;S_2;S\) lần lượt là diện tích ΔPBM; ΔPCN; ΔABC.
Cmr: \(\sqrt[3]{S_1}+\sqrt[3]{S_2}\le\sqrt[3]{S}\)
Em cảm ơn ạ !!!!
1, Cho tam giác ABC có I là trung điểm của cạnh BC. Qua I kẻ đường thẳng d cắt AB,AC lần lượt tại M và N . Kẻ dường thẳng d' cắt AC,AB lần lượt tại E,F . CMR : IE=IF
2, cho hình thoi ABCD có góc B bằng 60 độ . Một đường thẳng đi qua D cắt đường kéo dài các cạnh AB,BC lần lượt tại E và F. Gọi M là giao điểm của AF, CE . Chứng minh rằng : AD^2 = AM.AF
Cho tam giác ABC vuông tại A, D là điểm nằm giữa B và C. Qua D kẻ đường thẳng song song với AB cắt cạnh AC tại N, qua D kẻ đường song song với AC căt cạnh AB tại M. Gọi I, K lần lượt là trung điểm của BD và CD. Chứng minh: IM // KN
Cho tam giác ABC. Gọi I là 1 điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC tại N.
1) Gọi O là trung điểm của AI. Chứng minh rằng 3 điểm M,O,N thẳng hàng
2) Kẻ MH,NK,AD vuông góc với BC lần lượt là H,K,D.C/m rằng MH+NK=AD
Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Kẻ các đường thẳng song song với cạnh AB, AC lần lượt cắt các cạnh AC, AB tại P và Q.
a) Gọi N là điểm đối xứng của M qua Q. Gỉa sử tam giác ABC vuông tại A. Chứng minh rằng: Tứ giác AMBN là hình thoi.
c) Tam giác ABC có điều kiện giừ để tứu giác AMBN là hình vuông?
a: Xét tứ giác AMBN có
Q là trung điểm của AB
Q là trung điểm của MN
Do đó: AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
Cho ΔABC có AM là đường trung tuyến và điểm E ∈ MC. Qua E kẻ đường thẳng //AC ,cắt AB,AM lần lượt tại D,K. Qua E kẻ đường thẳng //AB, cắt AC tại F. CM CF=DK
Cho ΔABC, trung tuyến AD. Gọi G là trọng tâm của ΔABC. Đường thẳng d qua G cắt các cạnh AB, AC lần lượt tại M, N.
C/m:
a) \(\dfrac{AB}{AM}\) + \(\dfrac{AC}{AN}\) = 3
b) \(\dfrac{BM}{AM}\) + \(\dfrac{CN}{AN}\) = 1
Cho . Trên các cạnh AB, AC lần lượt lấy điểm D và E sao cho AD = AE. Qua D và E, kẻ đường vuông góc với BE cắt BC lần lượt tại M và N. Tia ND cắt tia CA tại I. Chứng minh rằng:
a) tam giác AID = tam giác ABE
b) CM = MN
Từ điểm A nằm ngoài đường tròn (o), vẽ 2 tiếp tuyến AB và AC đến đường tròn (o), (B,C là tiếp điểm). Qua O, kẻ đường thẳng m vuông góc với OC, qua A, kẻ đường thẳng n vuông góc với AC, 2 đường thẳng m và n cắt nhau tại D. OA cắt BC tại H.
Gọi M,N lần lượt là trung điểm OD, AH. Chứng minh MN vuông góc CN
Từ một điểm A nằm bên ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là tiếp điểm). Một đường thẳng (d) đi qua A cắt đường tròn (O) tại hai điểm D và E (d không đi qua tâm O, D nằm giữa A và E), gọi I là trung điểm của DE. BC cắt AE tại S. Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt các đường thẳng BE, BD lần lượt tại M và N. CM: C là trung điểm MN.