Cho a, b, c > 0 và a + 2b + 3c ≥ 20.
Tìm GTNN của \(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b,c là các số thực dương thỏa mãn a+2b+3c\(\ge\)20
tìm gtnn P= \(a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(P=\frac{3}{a}+\frac{3}{4}a+\frac{9}{2b}+\frac{1}{2}b+\frac{4}{c}+\frac{1}{4}c+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3\cdot2\sqrt{\frac{1}{a}\cdot\frac{a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{1}{4}\cdot20\)
\(\Rightarrow P\ge3+3+2+5=13\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
cho 3 số thực dương a, b, c thỏa mãn a+2b+3c \(\ge20\). Tìm GTNN của A= a+b+c+\(\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Ta có:
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{20}{4}=13\)
Vậy GTNN của A là 13 đạt được khi \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
_(Từ đầu bài ta có: GTNN của A là 13 đạt được khi: b = 3 và c =
a = 9 - (3 + 4)
= 2
GTNN của A = 3 <=> \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
tìm min \(a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)biết a+2b+3c>=20
Áp dụng BĐT Cô-si
Ta có \(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\Rightarrow A\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\Rightarrow A\ge13\)
Dấu bằng xảy ra khi\(a=2;b=3;c=4\)
Vậy\(MinA=13\Leftrightarrow\left(a;b;c\right)=\left(2;3;4\right)\)
Cho \(a;b;c>0\)và\(a+2b+3c\ge20\)
Tính \(Min\)\(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Cho 3 số a,b,c>0 .Tìm GTNN của P=\(\frac{a+3c}{a+2b+c}+\frac{4b}{a+b+2c}+\frac{8c}{a+b+3c}\)
Cho a;b;c>0 và \(a^3+b^3+c^3=3\) tìm Max:
\(\frac{a^3}{b-2b+3}+\frac{2b^3}{c^3+a^2-2a-3c+7}+\frac{3c^3}{a^4+b^4+a^2-2b^2-6a+11}\)
Có CTV nào làm đc ko
\(cho\) \(a,b,c>0\) và \(a+2b+3c\ge20\)
Tìm Min của \(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Áp dụng Côsi
\(S=\frac{3}{4}a+\frac{3}{a}+\frac{1}{2}b+\frac{9}{2b}+\frac{1}{4}c+\frac{4}{c}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)
\(=3+3+2+5=13\)
Dấu "=" xảy ra khi \(\frac{3a}{4}=\frac{3}{a};\text{ }\frac{b}{2}=\frac{9}{2b};\text{ }\frac{c}{4}=\frac{4}{c};\text{ }a+2b+3c=20\) hay \(a=2;\text{ }b=3;\text{ }c=4\)
Tìm a,b,c biết \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b-3c= -20
Theo t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow a=10;b=15;c=20\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)\(=\frac{a+2b-3c}{2+6-12}=-\frac{20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}a=5\cdot2=10\\b=5\cdot3=15\\c=5\cdot4=20\end{cases}}\)
Cho a,b,c.0 thỏa mãn: a+2b+3c=4;
Tìm GTNN của biểu thức; P=4a=7b+10c+\(\frac{4}{a}+\frac{1}{4b}+\frac{1}{9c}\)
P = 4a + 7b + 10c + \(\frac{4}{a}+\frac{1}{4b}+\frac{1}{9c}\)
P = \(3\left(a+2b+3c\right)+\left(a+\frac{4}{a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{9c}\right)\)
\(\ge3.4+2\sqrt{a.\frac{4}{a}}+2\sqrt{b.\frac{1}{4b}}+2\sqrt{c.\frac{1}{9c}}=\frac{53}{3}\)
Vây GTNN của P là \(\frac{53}{3}\)khi \(a=1;b=\frac{1}{2};c=\frac{1}{3}\)
quên a=2 mới đúng, vì bđt côsi đ/k là a=b