Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NO
Xem chi tiết
H24
10 tháng 7 2019 lúc 10:17

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

Bình luận (0)
H24
Xem chi tiết
HP
Xem chi tiết
NA
Xem chi tiết
NL
5 tháng 3 2019 lúc 19:53

2/

a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)

b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" khi \(a=b=\frac{1}{4}\)

c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm

Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

Cộng vế với vế ta được:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)

Dấu "=" khi \(x=y=z\)

d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)

\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)

e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)

\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

Bình luận (0)
NA
5 tháng 3 2019 lúc 17:15

@Akai Haruma Cô giúp em với ạ!!!

Bình luận (0)
MS
5 tháng 3 2019 lúc 18:15

? Cosi thôi câu 1 2 phần II

Bình luận (0)
PV
Xem chi tiết
PV
12 tháng 11 2017 lúc 19:47

các bạn giúp mình nha càng nhanh càng tốt

Bình luận (0)
TT
22 tháng 5 2018 lúc 22:07

Chờ mình nhé 

Bình luận (0)
H24
Xem chi tiết
TL
Xem chi tiết
HN
20 tháng 7 2016 lúc 13:05

Bạn xem lại đề bài nhé :)

Nhận xét : Với \(x\ge0\), ta có \(x=\sqrt{x^2}\)

Đặt \(x=\sqrt{A-\sqrt{B}}+\sqrt{A+\sqrt{B}}\), ta có \(x\ge0\), từ nhận xét suy ra \(x=\sqrt{x^2}\)

Ta có : \(x^2=2A+2\sqrt{A^2-B}=4\left(\frac{A+\sqrt{A^2-B}}{2}\right)\)

\(\Rightarrow x=2\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\)(1). Tương tự, đặt \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\).

Xét : \(A+\sqrt{B}-\left(A-\sqrt{B}\right)=2\sqrt{B}>0\Leftrightarrow A+\sqrt{B}>A-\sqrt{B}\)

\(\Leftrightarrow\sqrt{A+\sqrt{B}}>\sqrt{A-\sqrt{B}}\Rightarrow y>0\). Áp dụng nhận xét, ta cũng có \(y=\sqrt{y^2}\)

Ta có : \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\Leftrightarrow y=2A-2\sqrt{A^2-B}=4\left(\frac{A-\sqrt{A^2-B}}{2}\right)\)

\(\Rightarrow y=2\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\) (2)

Cộng (1) và (2) theo vế : \(x+y=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)

\(2\sqrt{A+\sqrt{B}}=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)

\(\Leftrightarrow\sqrt{A+\sqrt{B}}=\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\)(đpcm)

Bình luận (0)
PN
20 tháng 7 2016 lúc 11:06

ta thấy A + phân A thì sẽ tự làm

Bình luận (0)
TA
20 tháng 7 2016 lúc 12:36

Mình nghĩ bạn chép sai đề rồi, mình sửa lại nhé \(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}=\sqrt{A+\sqrt{B}}\)

Bình phương vế trái ta có: \(\left(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\right)^2\)

\(=\frac{A+\sqrt{A^2-B}}{2}+\frac{A-\sqrt{A^2-B}}{2}+2\sqrt{\frac{\left(A+\sqrt{A^2-B}\right)\left(A-\sqrt{A^2-B}\right)}{4}}\)

\(=\frac{2A+\sqrt{A^2-B}-\sqrt{A^2-B}}{2}+2\sqrt{\frac{A^2-\left(A^2-B\right)}{4}}\)

\(=A+2\sqrt{\frac{B}{4}}=A+\sqrt{4.\frac{B}{4}}=A+\sqrt{B}.\)

Do \(A>0,B>0\)nên ta suy ra \(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}=\sqrt{A+\sqrt{B}}\)(đpcm).

Bình luận (0)
HH
Xem chi tiết
KS
Xem chi tiết
TN
2 tháng 7 2016 lúc 13:25

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

Bình luận (0)
NS
2 tháng 7 2016 lúc 19:38

- Ôi má ơi, má patient dử dậy :)

Bình luận (0)