Cho a, b, c thỏa mãn điều kiện : a+b=3(b+c)=4(c+a) . Chứng minh rằng 9a=8b+c
Cho các số a , b , c thỏa mãn điều kiện : a+b=3(b+c)=4(c+a) . Chứng minh rằng 9a=8b+c
Tìm a,b,c thỏa mãn điều kiện a+b = 3( b+c) = 4(b+a)
Chứng minh rằng 9a=8b+c
cho a,b,c thoả mãn:
a+b=3(b+c)=4(c+a)
chứng minh 9a=8b+c
Có a+b=3(b+c)=4(c+a)
\(\Rightarrow\frac{a+b}{12}=\frac{3\left(b+c\right)}{12}=\frac{4\left(c+a\right)}{12}\Leftrightarrow\frac{a+b}{12}=\frac{b+c}{4}=\frac{c+a}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau,ta có:
\(\frac{a+b}{12}=\frac{b+c}{4}=\frac{c+a}{3}=\frac{a+b-b-c+c+a}{12-4+3}=\frac{2a}{11}\)
=>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1 .Chứng minh rằng
\(\dfrac{a+1}{a^4}+\dfrac{b+1}{b^4}+\dfrac{c+1}{4}\) ≥ \(\dfrac{3}{4}\)(a + 1)(b + 1)(c + 1)
Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai
Chia 2 vế cho \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\) BĐT trở thành:
\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}+\dfrac{1}{b^4\left(a+1\right)\left(c+1\right)}+\dfrac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\dfrac{3}{4}\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\) \(\Rightarrow xyz=1\)
\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}=\dfrac{x^4}{\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)}=\dfrac{x^4yz}{\left(y+1\right)\left(z+1\right)}=\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}\)
Do đó BĐT trở thành:
\(\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}+\dfrac{y^3}{\left(x+1\right)\left(z+1\right)}+\dfrac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\dfrac{3}{4}\)
Một bài toán quen thuộc
Câu 1:
a, Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1) +6 không chia hết cho 3. Chứng minh rằng 2n^2+n+8 không là số chính phương
b, cho 4 số dương a;b;c;d thỏa mãn điều kiện a^4/b + c^4/d = 1/(b+d) và a^2 + c^2 =1 . Chứng minh rằng (a^2014)/(b^1007) + ( c^ 2014)/(d^1007) = 2/( b+d)^1007
.Mọi người giải giúp Linh nha ^^ Linh đang cần gấp ạ!
Cho các số thực a, b, c thỏa mãn điều kiện : (0 < c < b< a<=3); (2ab <= 2a+3b); (3abc <= ab+3bc+2ca.)
Chứng minh rằng a³ +b³ + c³<= 36.
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
a) Cho hai số dương thỏa mãn điều kiện a - b = a3 + b3. Chứng minh rằng a2 + b2 < 1.
b) Cho a, b, c, d thuộc Z thỏa mãn a3 + b3 = 2(c3 - 8d3). Chứng minh rằng a + b + c + d chia hết cho 3.
a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)
\(\Leftrightarrow a^2+ab+b^2< 1\)
\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)
b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
Cho 4 số a,b,c,d thỏa mãn điều kiện a+b+c+d=2
Chứng minh rằng :\(a^2+b^2+c^2+d^2>=1\)
Áp dụng liên tiếp BĐT quen thuộc \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) ta được :
\(\left(a^2+b^2\right)+\left(c^2+d^2\right)\) \(\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)
\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2}{2}\ge\frac{\frac{\left(a+b+c+d\right)^2}{2}}{2}=\frac{\left(a+b+c+d\right)^2}{4}=\frac{2^2}{4}=1\)
Do đó : \(a^2+b^2+c^2+d^2\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\frac{1}{2}\)
Theo Svacxo ta có : \(LHS\ge\frac{\left(a+b+c+d\right)^2}{4}=\frac{2^2}{4}=1\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=\frac{1}{2}\)