cách biện luận giải hệ phương trình 2 ẩn
.cho phương trình ẩn x:ax2+(b-m)x+c=0 .Viết chương trình :
a) giải phương trình với hệ số a=0.
b)biện luận nghiệm của phương trình theo tham số m.
Giải phương trình và biện luận phương trình, cho biết phương trình ẩn x:
m^2*x= m*(x+2)-2
\(m^2x=m\cdot\left(x+2\right)-2\)
\(\Leftrightarrow x\left(m^2-m\right)-2m+2=0\)
*Nếu m=1 <=> m^2 - m = 0 \(\Leftrightarrow-2.1+2=0\left(Đ\right)\)
=> Với m =1 thì pt thỏa mãn với mọi x thuộc R
*Nếu \(m\ne1\Leftrightarrow x=\frac{2m-2}{m^2-m}\)
=> Với \(m\ne1\text{ thì }x=\frac{2m-2}{m^2-m}\)
Vậy ....
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải: 1 x - 2 + 1 y - 1 = 2 2 x - 2 - 3 y - 1 = 1
Giải và biện luận phương trình :
mx2 - 2 = 4x + m (m là tham số , x là ẩn )
\(mx^2-2=4x+m\)
\(\Leftrightarrow mx^2-4x=m+2\)
\(\Leftrightarrow x.\left(mx-4\right)=m+2\)
nếu \(mx-4\ne0\Leftrightarrow m\ne\frac{4}{x}\)\(\Leftrightarrow x\ne\pm1\) thì phương trình trên có 1 nghiệm duy nhất
\(x=\frac{m+2}{mx-4}\)
vậy khi \(m\ne\frac{4}{x}\) thì phương trình đã cho có nghiệm duy nhất \(x=\frac{m+2}{mx-4}\)
+) nếu \(m=\frac{4}{x}\) thì phương trình có dạng \(0x=m+2\) ( pt này có vô số nghiệm )
vậy khi \(m=\frac{4}{x}\)thì pt đã cho có vô số nghiệm
nghiệm tổng quát của phương trình là \(x\in R\)
Tham khảo bài này :
4 bài toán này đều là dạng bài Giải và biện luận PT bậc nhất
Nên cách giải cũng đơn giản thôi, bạn chỉ cần chuyển các PT trên về dạng ax+b=0 là được. Mình sẽ làm thử cho bạn xem nha?
1> PT<=> (m^2+1)x -2m+3=0
Dễ thấy : a=m^2+1# 0 ( với mọi giá trị của m )
Do đó : PT luôn có nghiệm duy nhất x=(2m-3)/(m^2+1)
2> PT có dạng : -m^2 - 3m = -2m + 6
<=> -m^2 - m -6 =0
vô nghiệm với mọi giá trị của m
=> PT đã cho luôn vô nghiệm với mọi giá trị của m
3> PT <=> (m-1)x -m^2-m+2 = 0
TH1 : m-1# 0 <=> m # 1
thì PT luôn có nghiệm duy nhất : x=(m^2+m-2)/(m-1) = m+2
TH2 : m-1=0 <=> m = 1
thì PT có dạng : 0x+0 = 0
=> PT có vô số nghiệm ( hay PT có nghiệm x tùy ý )
Kết luận :
Với m # 1 : PT có nghiệm duy nhất x = m+2
Với m=1 : PT có vô số nghiệm
4> (m^2-3m+2)x -m^2+m = 0
TH1 : m^2-3m+2 = 0 <=> m=1 hoặc m=2
- Nếu m=1 thì PT có dạng : 0x+0=0
=> PT có vô số nghiệm
- Nếu m=2 thì PT có dạng : 0x-2=0
=> PT vô nghiệm
TH2 : m^2-3m+2 # <=> m # 1 và m # 2
thì PT có nghiệm duy nhất x=(m^2-m)/(m^2-3m+2) = m/(m-2)
Kết luận :
Với m=1 : PT có vô số nghiệm
Với m=2 :PT vô nghiệm
Với m # 1 và m # 2 thì PT có nghiệm duy nhất x=m/(m-2)
Sửa đề : \(m^2x+2=m+4x\)
Pt ẩn x : \(m^2x+2=m+4x\)
\(\Leftrightarrow\)\(m^2x-4x=m-2\)
\(\Leftrightarrow\)\(x\left(m^2-4\right)=m-2\)
\(x\left(m-2\right)9m+2=m-2\)
- Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Pt ( 1 ) có nghiệm \(x=\frac{m-2}{\left(m-2\right)\left(m+2\right)}=\frac{1}{m+2}\)
- Nếu \(m-2=0\Leftrightarrow m=2\)
Pt ( 1 0 có dạng 0x = 0 : pt vô nghiệm
- Nếu \(m+2=0\Leftrightarrow m=-2\)
Pt ( 1 ) có dạng 0x = -4 : pt vô nghiệm
Vậy tự kết luận
Chứ nếu mà đúng đề thì \(mx^2-2=4x+m\)
\(\Leftrightarrow\)\(mx^2-4x=m+2\)
\(\Leftrightarrow\)\(x\left(mx-4\right)=m+2\)
vậy thì cạp đất mà ăn à
Cho hệ phương trình: { 2mx + y = 2 (m mà than số)
{ 8x + my = m + 2
a) Giải hệ phương trình khi m = -1
b) Tìm m để hệ phương trình có nghiệm là x = 2; y = 6
c) Giải và biện luận hệ phương trình theo m
d) Trong trường hợp có nghiệm duy nhất:
+ Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc m
+ Tìm m để 4x + 3y = 7
+ Tìm m để x - y > 0
+ Tìm m để P = y^2 - 2x đạt giá trị nhỏ nhất
Giải và biện luận theo tham số m để hệ phương trình với hai ẩn x va y sau:
\(\hept{\begin{cases}mx+y=1\\3x-\left(m+1\right)y=-3\end{cases}}\)
\(\hept{\begin{cases}mx+y=1\left(1\right)\\3x-\left(m+1\right)y=-3\left(2\right)\end{cases}}\).
Từ phương trình (1) suy ra \(y=1-mx\)
Thay vào phương trình (2),ta có: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^3x-mx+m=3x+2\)
\(\Leftrightarrow-m\left(m^2x+x-1\right)-3x=2\)
Với m = 0 phương trình có nghiệm duy nhất: \(x=-\frac{2}{3}\)
Xét tiếp tục với \(m\ne0\) nhé bạn.
Thôi chết giải nhầm.
Giải
Từ phương trình thứ nhất của hệ suy ra \(y=1-mx\)
Thay vào phương trình thức hai của hệ được: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow m\left(1-mx\right)+1\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^2x-mx+m=3x+2\)
Với m = 0 thì \(PT\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
Với \(m\ne0\) .....giải tiếp ....
^^
giải và biện luận phương trình
2(mx+5) + 5(x+m) = m
( với m là tham số , x là ẩn)
Cho hệ phương trình \(\left\{{}\begin{matrix}x-2y=1\\mx+y=2\end{matrix}\right.\)
giải và biện luận hệ phương trình với m là tham số
• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)
• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1} \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)
• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)
Vậy....
Cho hệ phương trình (m là tham số): 2mx+y=2 8x+my=m+2 Giải và biện luận hệ phương trình đã cho theo m Mn giúp em với ạ
2mx+y=2 và 8x+my=m+2
=>y=2-2mx và 8x+m(2-2mx)=m+2
=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)
=>2(m-2)(m+2)x=m-2 và y=-2mx+2
Nếu m=2 thì hệpt có vô số nghiệm
Nếu m=-2 thìhệ pt vn
Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)