Những câu hỏi liên quan
ND
Xem chi tiết
H24
Xem chi tiết
NL
29 tháng 9 2019 lúc 7:14

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

Bình luận (1)
H24
27 tháng 9 2019 lúc 21:34

Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền

Bình luận (2)
BT
Xem chi tiết
CL
24 tháng 12 2017 lúc 20:05

ta có : abc = 100a + 10b + c (1)

cba = 100c + 10b + a = (n-2)2 (2)

lấy (2) trừ (1) ta có: 99(a - c) = 4n - 5 => 4n - 5 \(⋮\) 99

100 \(\le\) n2 - 1 \(\le\) 999

<=> \(101\le n^2\le1000\)

<=> \(11\le n\le31\)

<=> \(44\le4n\le124\)

<=> \(39\le4n-5\le119\)

mà 4n - 5 \(⋮\) 99

=> 4n - 5 = 99

=> n = 26

=>abc = 262 - 1 = 675

VẬy.....

Bình luận (0)
NN
Xem chi tiết
TH
27 tháng 7 2018 lúc 11:01

a) \(1:\overline{0,abc}=a+b+c\)

\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)

\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)

Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125

Bình luận (3)
H24
Xem chi tiết
ST
12 tháng 9 2017 lúc 17:23

a, ab + bc + ca = abc

ab + bc + ca = a00 + bc

ab + ca = a00

Vì ab và ca là số có hai chữ số nên tổng của chúng ko quá 200 => a = 1

Vì b + a có tận cùng là 0 => b = 9

c + a + nhớ 1 có tận cùng là 0 => c = 8

Vậy a=1,b=9,c=8

b, abc + ab + a = 874

Đổi chỗ các chữ số vào 1 cột, ta được:

abc                                      aaa
+                                       +
 ab                         =>            bb
+                                        + 
   a                                            c
____                                  ______

874                                       874

Do bb + c < 10 nên 847 \(\ge\overline{aaa}\) > 874 - 110 = 764 => \(\overline{aaa}=777\)

=> bb + c = 874 - 777 = 97 

Mà \(97\ge\overline{bb}>97-10=87\Rightarrow\overline{bb}=88\)

=> c = 97 - 88 = 9

Vậy a = 7, b = 8, c = 9 

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
AK
20 tháng 1 2019 lúc 20:12

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

Bình luận (2)
Xem chi tiết
NC
Xem chi tiết