a) \(\left(x+1\right)^3=-27\)
b) \(\sqrt{36}-\sqrt{9}.x=\sqrt{64}\)
Giúp mình với
a) tính gtrị của biểu thức A = \(\sqrt{3}+\sqrt{12}-\sqrt{27}-\sqrt{36}\)
b) cho bt B = \(\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x-5}}{\sqrt{x\left(\sqrt{x-1}\right)}}\) với x > 0 và x \(\ne\) 1 . rút gọn bt và tìm x để B = 2
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
Câu 1 (2 điểm).
a) Tính \(\sqrt{64}+\sqrt{16}-2\sqrt{36}\).
b) Rút gọn biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\dfrac{2}{1+\sqrt{x}}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}\), với x>0; x\(\ne1\).
Câu 1 :
a, \(=8+4-2.6=12-12=0\)
b, đk : x > 0 ; x khác 1
\(P=\left(\dfrac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}=\dfrac{1-\sqrt{x}}{1-\sqrt{x}}=1\)
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=6\sqrt{3^2.3}-2\sqrt{5^2.3}-\frac{1}{2}\sqrt{10^2.3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=3\sqrt{3}\)
vậy \(A=3\sqrt{3}\)
\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\) \(ĐKXĐ:x>0;x\ne1\)
\(B=\left[1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(B=\left[1+\sqrt{x}\right]\left[1-\sqrt{x}\right]\)
\(B=1-x\)
vậy \(B=1-x\)
\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)
\(C=\sqrt[3]{4^3}-\sqrt[3]{\left(-5\right)^3}+\sqrt[3]{6^3}\)
\(C=4+5+6\)
\(C=15\)
vậy \(C=15\)
Cho mk giải câu a:
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=18\sqrt{3}-10\sqrt{3}-\frac{1}{2}10\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-10:2\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=\left(18-10-5\right)\sqrt{3}\)
\(A=3\sqrt{3}\)
Giải phương trình
a) \(\sqrt{9\left(x-1\right)}=21\)
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
Giúp mình vs nhé! Cảm ơn!!!
\(\sqrt{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=50\)
Vậy x = 50
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=\left(2+3\right)\sqrt{3}\)
\(\Leftrightarrow x+1=5\)
\(\Leftrightarrow x=4\)
Vậy x = 4
\(\sqrt{9\left(x-1\right)}=21\\9\left(x-1\right)=21^2\\x-1=49\\ x=48 \)\(\sqrt{3}x+\sqrt{3}=2\sqrt{3}+3\sqrt{3}\\ 0=\sqrt{3}\left(2+3-1-x\right)\\ 0=\sqrt{3}\left(4-x\right)\\ x=4\\ \)
Tìm x biết
\(a,-\frac{1}{2}\left(3x-1\right)+\frac{3}{4}\left(3-2x\right)=-3\left(\frac{x}{2}-1\right)-\left(\frac{4}{5}\right)^{-1}\)
\(b,\sqrt{9\left(5x-1\right)}-\sqrt{16\cdot\left(5x-1\right)}+\sqrt{36\left(5x-1\right)}=15\)
MÌNH ĐANG CẦN GẤP GIẢI CỤ THỂ GIÚP MÌNH NHA
Tính giá trị biểu thức:
a) \(P=\left(x^3+12x-9\right)^{2005}\), biết \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\);
b) \(Q=x^3+ax+b\), biết \(x=\sqrt[3]{-\dfrac{b}{2}+\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}+\sqrt[3]{-\dfrac{b}{2}-\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}\)
a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975
b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b
\(\left(\dfrac{x+3\sqrt{x}-2}{x-9}-\dfrac{1}{\sqrt{x}+3}\right)\)\(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
RÚT GỌN GIÚP MÌNH VỚI
\(=\left(\dfrac{x+3\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\dfrac{1}{\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4}}-\dfrac{\sqrt[3]{24}}{2}\)
\(\sqrt[3]{-0,08}\)\(-\dfrac{1}{5}.\sqrt[3]{64}+5\sqrt[3]{\left(-5\right)^3}\)
tính giúp mình với
b: Ta có: \(\sqrt[3]{-0.008}-\dfrac{1}{5}\cdot\sqrt[3]{64}+5\cdot\sqrt[3]{\left(-5\right)^3}\)
\(=-\dfrac{1}{5}-\dfrac{1}{5}\cdot4+5\cdot\left(-5\right)\)
\(=-\dfrac{1}{5}-\dfrac{4}{5}-25\)
=-26
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\hept{\begin{cases}x+9\\9-x\end{cases}}\right):\left(\frac{\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right).\)
a) Tìm điều kiện xác định và rút gọn biểu thức P
b) Tìm các giá trị của x để < -1
AI GIÚP MÌNH ĐI....GIÚP MÌNH MÌNH SẼ TÍCH CHO NHỮNG BẠN GIÚP MÌNH <3 T^T