Những câu hỏi liên quan
LT
Xem chi tiết
AT
19 tháng 7 2021 lúc 16:05

a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa

b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)

nên căn luôn có nghĩa

c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)

h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)

i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)

Bình luận (0)
NT
19 tháng 7 2021 lúc 20:46

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(x\in R\)

c) ĐKXĐ: x>-4

h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

 

Bình luận (0)
YT
Xem chi tiết
NT
1 tháng 10 2021 lúc 20:55

1: ĐKXĐ: \(-1< x< 1\)

2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)

3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)

4: ĐKXĐ: \(2< a\le3\)

Bình luận (0)
PA
Xem chi tiết
NT
23 tháng 10 2021 lúc 22:59

a: ĐKXĐ: \(x\ge1\)

b: ĐKXĐ: \(x< 0\)

c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

Bình luận (0)
LL
23 tháng 10 2021 lúc 23:04

1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)

2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)

3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)

4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

5) ĐKXĐ: 

+) \(-x^2+6x+16\ge0\)

\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)

\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)

\(\Leftrightarrow-2\le x\le8\)

+) \(3x^2\ne0\Leftrightarrow x\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)

 

Bình luận (0)
6C
Xem chi tiết
NT
2 tháng 10 2021 lúc 21:30

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)

b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

Bình luận (0)
YT
Xem chi tiết
NT
1 tháng 10 2021 lúc 20:50

1: ĐKXĐ: \(a>-2\)

2: ĐKXĐ: \(x\ne2\)

3: ĐKXĐ: \(a\in\varnothing\)

 

Bình luận (0)
TH
1 tháng 10 2021 lúc 20:56

1)
\(-\dfrac{1}{\sqrt{a+2}}\) có nghĩa khi \(\sqrt{a+2}>0\)
=>a+2>0
    a>-2
2)
\(\sqrt{\dfrac{3}{\left(x-2\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(x-2\right)^2}}\) 
mà \(\left(x-2\right)^2>0=>\sqrt{\left(x-2\right)^2}>0vớimọix\)
3)
\(\sqrt{\dfrac{-3}{a^2-4a+4}}=\sqrt{\dfrac{-3}{\left(a-2\right)^2}}cónghĩakhi\left(a-2\right)^2< 0mà\left(a-2\right)^2>0=>biểuthứckocónghĩavớimọia\)
 

Bình luận (0)
YH
1 tháng 10 2021 lúc 21:01

a) \(-\dfrac{1}{\sqrt{a+2}}\Rightarrow\sqrt{a+2}>0\Leftrightarrow a>-2\)

b) \(\sqrt{\dfrac{3}{\left(x-2\right)^2}}\Rightarrow x-2\ne0\Leftrightarrow x\ne2\)

c) \(\sqrt{\dfrac{-3}{a^2-4a+4}}\Rightarrow a^2-4a+4< 0\Leftrightarrow a^2-4a< -4\)

d) \(\sqrt{\dfrac{2}{x^2+2x+2}}\Rightarrow x^2+2x+2>0\Leftrightarrow x^2+2x>-2\)

e) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\Rightarrow x^2-4x+5< 0\Leftrightarrow x^2-4x< -5\)

f) \(\sqrt{\dfrac{-4}{x^2-1}}\Rightarrow x^2-1< 0\Rightarrow x^2< 1\Rightarrow x< 1\)

2 câu cuối do lỗi nên mk ko gõ cth được

Bình luận (0)
MB
Xem chi tiết
NT
25 tháng 7 2023 lúc 20:32

1: ĐKXĐ: 3x^2-x+2>=0

=>x thuộc R

2: ĐKXĐ: x>=0 và căn x-1<>0 và 2-căn x<>0 và 2x+1>0 và x<>0

=>x>0 và x<>1 và x<>4

Bình luận (0)
QM
Xem chi tiết
HD
14 tháng 12 2021 lúc 18:52

1B

2B

3D

4D

Bình luận (1)
92
Xem chi tiết
LL
11 tháng 10 2021 lúc 12:47

1) ĐKXĐ: \(\left\{{}\begin{matrix}x^2+x+1\ge0\\x^2+1\ne0\end{matrix}\right.\)

Ta có:

+) \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

+) \(x^2+1\ge1>0\forall x\)

Vậy biểu thức luôn xác định với mọi x

2) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-2x+3>0\\x^2-x+1\ge0\end{matrix}\right.\)

Ta có: 

+) \(x^2-2x+3=\left(x^2-2x+1\right)+2\)

\(=\left(x-1\right)^2+2\ge2>0\forall x\)

+) \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

Vậy biểu thức luôn xác định với mọi x

Bình luận (0)
MV
Xem chi tiết
NT
18 tháng 4 2023 lúc 19:58

loading...  

Bình luận (0)