Những câu hỏi liên quan
DV
Xem chi tiết
DV
28 tháng 3 2021 lúc 20:16

Giúp mình đang cần gấp

 

Bình luận (0)
HA
Xem chi tiết
NT
8 tháng 2 2021 lúc 19:30

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

Bình luận (1)
LL
8 tháng 2 2021 lúc 20:05

Ta có: BC2=102=100

AB2+AC2=62+82=100

Vậy BC2=AB2+AC2

Xét ΔABC có:

 BC2=AB2+AC2

Nên ΔABC vuông tại A(Định lí Pytago đảo)

Ta có: ΔABC vuông tại A(gt)

Nên 

Bình luận (0)
NT
Xem chi tiết
KT
29 tháng 4 2018 lúc 14:03

a)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

                \(AB^2+AC^2=BC^2\)

     \(\Leftrightarrow\) \(AC^2=BC^2-AB^2\)

     \(\Leftrightarrow\) \(AC^2=10^2-6^2=64\)

     \(\Leftrightarrow\)  \(AC=\sqrt{64}=8\)cm

b)  Xét  \(\Delta ABC\) và     \(\Delta BDA\)có:

\(\widehat{BAC}=\widehat{DBA}=90^0\)

\(\widehat{ACB}=\widehat{BAD}\) (cùng phụ với góc DAC)

suy ra:   \(\Delta ABC~\Delta BDA\)

c)  \(\Delta ABC~\Delta BDA\)

\(\Rightarrow\)\(\frac{S_{ABC}}{S_{BDA}}=\left(\frac{AC}{AB}\right)^2=\left(\frac{8}{6}\right)^2=\left(\frac{4}{3}\right)^2=\frac{16}{9}\)

Bình luận (0)
NT
Xem chi tiết
TT
13 tháng 11 2020 lúc 18:34

a) Diện tích tam giác ABC (Heron)

\(S_{ABC}=\frac{1}{4}\sqrt{\left(AB+BC+AC\right)\left(AB+BC-AC\right)\left(BC+AC-AB\right)\left(AC+AB-BC\right)}\)

\(S_{ABC}=\frac{1}{4}\sqrt{\left(6+10+8\right)\left(6+10-8\right)\left(10+8-6\right)\left(8+6-10\right)}=24\left(cm^2\right)\)

b)Xét tam giác ABC có 

\(BC^2=10^2=100\left(cm\right)\)

\(AB^2+AC^2=6^2+8^2=100\left(cm\right)\)

Vì 100cm=100cm

\(\Rightarrow BC^2=AB^2+AC^2\)

=> Tam giác ABC vuông tại A 

Xét diện tích tam giác ABC thường \(S_{ABCt}=\frac{AH.BC}{2}\left(1\right)\)

Xét diện tích tam giác ABC vuông \(S_{ABCv}=\frac{AC.AB}{2}\left(2\right)\)

Từ (1) và (2) 

\(\Leftrightarrow AH.BC=AB.AC\)

\(\Leftrightarrow AH.10=8.6\Leftrightarrow AH=4,8\left(cm\right)\)

Xét tam giác ABH vuông tại H 

\(\Rightarrow BH^2=AB^2-AH^2\left(PYTAGO\right)\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}\)

\(\Rightarrow BH=\sqrt{6^2-13,3^2}=3,6\left(cm\right)\)

Xét tam giác ACH vuông tại H

\(\Rightarrow HC^2=AC^2-AH^2\left(PYTAGO\right)\)

\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)

\(\Rightarrow HC=\sqrt{8^2-4,8^2}=6,4\left(cm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
14 tháng 11 2020 lúc 16:09

bút chì đọc tiếng anh là gì ?

Bình luận (2)
 Khách vãng lai đã xóa
BL
15 tháng 11 2020 lúc 9:30

1+1=????

ôppopopoppoo

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
MH
8 tháng 2 2022 lúc 20:40

Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=\sqrt{64}=8cm\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=\dfrac{24}{5}=4,8cm\)

Bình luận (0)
NT
8 tháng 2 2022 lúc 20:38

a, Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=8cm\)

b, Xét tam giác ABH và tam giác CBA có : 

^B _ chung 

^BAH = ^BCA ( cùng phụ ^HAC ) 

Vậy tam giác ABH ~ tam giác CBA ( g.g ) 

=> AH/AC = AB/BC => AH = 6.8:10 = 4,8 cm 

Bình luận (0)
NH
Xem chi tiết
NT
11 tháng 2 2022 lúc 15:30

1: Xét ΔABC có BD là đường phân giác

nên AD/CD=AB/BC=3/5

2: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có 

\(\widehat{C}\) chung

do đó: ΔCHD∼ΔCAB

Suy ra: HD/AB=CD/CB

hay \(CD\cdot AB=HD\cdot CB\)

Bình luận (0)
DH
Xem chi tiết
QL
Xem chi tiết
KT
13 tháng 9 2023 lúc 22:22

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)

\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)

\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)

Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).

b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).

Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = \frac{1}{2}BD.AE\)

Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)

Diện tích tam giác \(ADC\) là:

\({S_{ADC}} = \frac{1}{2}DC.AE\)

Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).

Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).

Bình luận (0)
HH
Xem chi tiết
NT
5 tháng 1 2023 lúc 23:46

1: Xét tứ giác ADME co

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

Xét ΔABC có

DM//AC

nên DM/AC=BD/BA=BM/BC

=>D là trung điểm của BA

Xét ΔABC có ME//AB

nên ME/AB=CM/CB=CE/CA=1/2

=>E là trung điểm của AC

=>EM//BD và EM=BD

=>BMED là hình bình hành

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

2: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

AD=AB/2=3cm

AE=AC/2=4cm

\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)

3: ΔHAC vuông tại H

mà HE là trung tuyến

nên HE=AC/2=MD

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Xét tứ giác DHME có

DE//MH

MD=HE

Do đo: DHME là hình thang cân

Bình luận (0)