ủa chỉ mik cách tách với
a) \(3x^3-3x^2-7x+3\)
b) \(-x^2+10x+35\)
c) \(2x^2+4x+18\)
a) x^2 + x - 6
b) x^2 - 4x + 3
c) x^2 + 5x + 4
d) x^2 - x - 6
e) 2x^2 + 5x + 3
g) 2x^2 - 7x + 3
h) 3x^2 + 10x - 8
k) 1/2x^2 - 19/6x + 1
Mn giúp em nhé :3, dùng phương pháp tách hạng tử và cần nhiều cách ạ (mỗi ý 6 cách)
Làm 1 cách là đủ rồi mà (: 6 cách thì đến bao giờ :v
a) x2 + x - 6 = x2 - 2x + 3x - 6 = x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( x + 3 )
b) x2 - 4x + 3 = x2 - x - 3x + 3 = x( x - 1 ) - 3( x - 1 ) = ( x - 1 )( x - 3 )
c) x2 + 5x + 4 = x2 + x + 4x + 4 = x( x + 1 ) + 4( x + 1 ) = ( x + 1 )( x + 4 )
d) x2 - x - 6 = x2 + 2x - 3x - 6 = x( x + 2 ) - 3( x + 2 ) = ( x + 2 )( x - 3 )
e) 2x2 + 5x + 3 = 2x2 + 2x + 3x + 3 = 2x( x + 1 ) + 3( x + 1 ) = ( x + 1 )( 2x + 3 )
g) 2x2 - 7x + 3 = 2x2 - 6x - x + 3 = 2x( x - 3 ) - ( x - 3 ) = ( x - 3 )( 2x - 1 )
h) 3x2 + 10x - 8 = 3x2 + 12x - 2x - 8 = 3x( x + 4 ) - 2( x + 4 ) = ( x + 4 )( 3x - 2 )
k) \(\frac{1}{2}x^2-\frac{19}{6}x+1=\frac{1}{2}x^2-\frac{1}{6}x-3x+1=\frac{1}{2}x\left(x-\frac{1}{3}\right)-3\left(x-\frac{1}{3}\right)=\left(x-\frac{1}{3}\right)\left(\frac{1}{2}x-3\right)\)
bị đòi làm 6 cách :')
Câu2: Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a) -2x(x-5)+3(x-1)+2x^2-13x
b)-x^2(2x^2 - x - 3)+x(x^2+2x^3+3)-3x(x^2+x)+x^3-3x
Câu3: Tìm x, biết
a) 5x^2-5x(x-5)=10x-35.
b) 4x(x - 5) -7x(x - 4) + 3x^2 = 4 - x
Câu4: Tính giá trị biểu thức sau:
a) A=2x(3x^2-2x)+3x^2(1-2x)+x^2-7 với x = -2
b) B=x^5-15x^4+16x^3-29x^2+13x với x =14
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
Câu 3:
a) \(5x^2-5x\left(x-5\right)=10x-35\)
\(\Leftrightarrow5x^2-5x^2+25x=10x-35\)
\(\Leftrightarrow25x=10x+35\)
\(\Leftrightarrow15x=35\)
\(\Leftrightarrow x=\dfrac{35}{15}=\dfrac{7}{3}\)
Vậy nghiệm của phương trình là \(x=\dfrac{7}{3}\)
b) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=4-x\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=4-x\)
\(\Leftrightarrow8x=4-x\)
\(\Leftrightarrow9x=4\)
\(x=\dfrac{4}{9}\)
Vậy nghiệm của phương trình là \(x=\dfrac{9}{4}\)
Bài 3.giải các phương trình sau bằng cách đưa về phương trình tích.
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x=28=0
f) 3x^3-3x^2-6x=0
Sắp xếp các đa thức sau theo bậc lũy thừa tăng rồi tìm bậc của mỗi đa thức sau khi thu gọn và chỉ ra hệ số khác 0 của mỗi đa thức.
A(x)=4x mũ 3 - 2x mũ 2 +6x -5x mũ 3 +4x mũ 2 - 10x - 4.
R(x)= -x mũ 2 + 3x mũ 4 + 3x - 2x mũ 4 + 9x mũ 5 - 6x mũ 2 - 5.
Q(x)= 9 + 5x mũ 2 - 3x mũ 3 + 6x mũ 2 + 7x mũ 3 - 4x mũ 5 -6.
B(x)= 4x mũ 3 - 2x + 5x mũ 3 - 7x + 2 x mũ 2 + 10x - 2x mũ 3 + 8.
Giải giùm em với mọi người ơi!!
\(9x^4-4x^2=0\)
\(2x^4-x^2-6=0\)
\(x^4-9x^2+100=0\)
\(x^4-3x^2-54=0\)
\(3x^4-10x^2+3=0\)
\(x^4-7x^2-18=0\)
a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)
hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)
\(\Leftrightarrow x^2-9=0\)
=>x=3 hoặc x=-3
BT3: Phân tích các đa thức sau thành nhân tử bằng phương pháp cách tách hạng tử. a, x^3 + 4x^2 - 21x b, 5x^3 + 6x^2 + x c, x^3 - 7x + 6 d, 3x^3 + 2x - 5
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
1. TÌm x:
a)4x^2-2x+3-4x.(x-5)=7x-3
b)-3x.(x-5)+5.(x-1)+3x^2=4x
c)7x.(x-2)-5.(x-1)=21x^2-14x^2+3
d)3.(5x-1)-x.(x-2)+x^2-13x=7
e) 1/5x.(10x-15)-2x.(x-5)=12
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3
--> 11x = -6
--> x = \(\frac{-6}{11}\)
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
--> -3x2 + 15x + 5x - 5 + 3x2 = 4x
--> -3x2 + 15x + 5x + 3x2 - 4x = 5
--> 16x = 5
--> x = \(\frac{5}{16}\)
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
--> 7x2 - 14x - 5x + 5 = 7x2 + 3
--> 7x2 - 14x - 5x - 7x2 = -5 + 3
--> -19x = -2
--> x = \(\frac{2}{19}\)
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
--> 15x - 3 - x2 + 2x + x2 - 13x = 7
--> 15x - x2 + 2x + x2 - 13x = 3 + 7
--> 4x = 10
--> x = \(\frac{5}{2}\)
e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12
--> 2x2 - 3x - 2x2 + 10x = 12
--> 7x = 12
--> x = \(\frac{12}{7}\)
~ Học tốt ~
1. TÌm x:
a)4x^2-2x+3-4x.(x-5)=7x-3
b)-3x.(x-5)+5.(x-1)+3x^2=4x
c)7x.(x-2)-5.(x-1)=21x^2-14x^2+3
d)3.(5x-1)-x.(x-2)+x^2-13x=7
e) 1/5x.(10x-15)-2x.(x-5)=12
a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3
=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
=> 18x + 3 = 7x - 3
=> 18x - 7x = -3 - 3
=> 11x = -6
=> x = -6/11
b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x
=> -3x2 + 15x + 5x - 5 + 3x2 = 4x
=> 20x - 5 = 4x
=> 20x - 4x = 5
=> 16x = 5
=> x = 5/16
\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)
\(\Leftrightarrow7x^2-7x^2-19x=3-5\)
\(\Leftrightarrow-19x=-2\)
\(\Leftrightarrow x=\frac{2}{19}\)
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
<=> 18x + 3 = 7x - 3
<=> 18x = 7x - 3 - 3
<=> 18x = 7x - 6
<=> 18x - 7x = -6
<=> 11x = -6
<=> x = -6/11
=> x = -6/11
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
<=> 20x - 5 = 4x
<=> 20x = 4x + 5
<=> 20x - 4x = 5
<=> 16x = 5
<=> x = 5/16
=> x = 5/16
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
<=> 7x.(x - 2) - 5.(x - 1) = 7x2 + 3
<=> 7x2 - 19x + 5 = 7x2 + 3
<=> 7x2 - 19x = 7x2 + 3 - 5
<=> 7x2 - 19x = 7x2 - 2
<=> 7x2 - 19x - 7x2 = -2
<=> -19x = -2
<=> x = 2/19
=> x = 2/19
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
<=> 4x - 3 = 7
<=> 4x = 7 + 3
<=> 4x = 10
<=> x = 10/4
=> x = 5/2
e) 1/5x.(10x - 15) - 2x.(x - 5) = 12
<=> x(2x - 3) - 2x(x - 5) = 12
<=> 7x = 12
<=> x = 12/7
=> x = 12/7
Giải phương trình :
a)(2x-5)^3-(3x-4)^x+(x+1)^3=0
b)(x-1)^3+(2x-3)^3+(3x-5)^3 - 3(x-1)(2x-3)(3x-5) = 0
c)(x^2+3x-4)^3 + (3x^2+7x+4)^3 = (4x^2+10x)^3