1)(x-90)(x-35)(x+18)(x+7)=-1080 x^2
2)(6x+1)(2x+6)(4x-3)(3x-2)=56x^2
3)(x^2+7x+12)(x^2-15x+56)=180
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
Tìm GTLN của C=,\(-x^4+2x^3-3x^2+4x+2002\)
D= \(\frac{-7x^2+74x-196}{x^2-10x+25}\)
Giả pt bằng cách đặt ẩn phụ a,\(2x^2-6x+1=\sqrt{4x+5}\)
b,\(x+\sqrt{5+\sqrt{x-1}=6}\)
c,\(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
d,\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
. Giải các phương trình sau:
a, \(\sqrt{10x^2+3x+1}\) = (6x+1)\(\sqrt{x^2+3}\)
b, (4x-1)\(\sqrt{x^3+1}\)= \(2x^3+x^2+1\)
c, \(\sqrt[3]{3x^2-x+2010}-\sqrt[3]{3x^2-6x+2011}-\sqrt[3]{5x-2012}=\sqrt[3]{2011}\)
d, \(\sqrt[3]{1+7x}+\sqrt[3]{2x-1}=2\sqrt[3]{x}\)
e, \(\sqrt[3]{x^4-x^2}+x^2=2x+1\)
Giải các ptr sau
a, 10x2 + 17x + 3 = 2( 2x - 1 ) - 15
b, x2 + 7x - 3 = x( x - 1 ) - 1
c, 2x2 - 5x - 3 = (x + 1)(x - 1) + 3
d, 5x2 - x - 3 = 2x( x - 1) - 1 + x2
e, -6x2 + x - 3 = -3x( x - 1) -11
f, -4x2 + x ( x - 1) - 3 = x( x + 3 ) + 5
g, x2 - x - 3( 2x + 3 ) = -x( x - 2) - 1
h, -x2 - 4x - 3( 2x - 7 ) = -2x( x + 2 ) - 7
i, 8x2 - x - 3x( 2x - 3 ) = -x( x - 2 )
k, 3( 2x + 3 ) = -x( x - 2 ) -1
Tìm x để các biểu thức sau có nghĩa :
a) \(\sqrt{5x-3}\)- \(\sqrt{x+4}\)
b)\(\sqrt{\frac{4-7x}{2x+3}}\)
c) \(\sqrt{3x^2-7x+4}\)
d) \(\frac{\sqrt{x^2+2x-35}}{\sqrt{4x^2-12x+9}}\)
a,\(\frac{3}{x}+\frac{1}{x+3}+\frac{3}{x+6}+\frac{1}{x+7}=\frac{1}{1-x}\)
b, \(\frac{1}{x-5}+\frac{1}{x-2}+\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+3}=\frac{3x-3}{4}\)
c,\(\frac{1}{x-3}+\frac{1}{3x+1}+\frac{10x-13}{4x-6}=\frac{1}{x+1}+\frac{1}{2x-1}+\frac{1}{3x+7}\)
d,\(\frac{x^2+x+1}{2x-1}\left(\frac{3x^2-x+5}{4x-2}-3\right)=8\)
e,\(\frac{2x^2-3}{3x-1}\left(2x-\frac{7+4x}{3x-1}\right)=2\)
f,\(\frac{x\left(3x-1\right)\left(3x^2+1\right)\left(6x^2-3x-1\right)}{\left(x+1\right)^3}=\frac{1}{2}\)
g, \(x\left(x^2+2\right)\left(x^2+2x+8+\frac{12}{x-2}\right)=3\left(x-2\right)\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)