Tìm x, y, z biết: \(2^{x-2}\).\(3^{y-3}\).\(5^{z-1}\)= 144
Tìm x, y, z biết:
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
Tìm x , y , z biết :
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
2^x-2*3^y-3*5^z-1=144 tìm x,y,z
Tìm x, y, z biết:
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
Giải giúp ạ !!
\(2^{x-2}.3^{y-3}.5^{z-1}=144=2^4.3^2.5^0\)
\(\Rightarrow\hept{\begin{cases}x-2=4\Rightarrow x=6\\y-3=2\Rightarrow y=5\\z-1=0\Rightarrow z=1\end{cases}}\)
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
mà 144 = 24.32
=> \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.1=2^4.3^2.5^0\)
=> \(\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)
Vậy...
Tìm x,y,z:
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
Phân tích 144 thành thừa số nguyên tố, ta được:
144 = 24.32
Mà theo đề:
2x-2 . 3y-3 . 5z-1 = 144
=> 2x-2 . 3y-3 . 5z-1 = 24 . 32 . 50 (Lưu ý: 50 = 1)
=> x - 2 = 4 và y - 3 = 2 và z - 1 = 0
=> x = 6 và y = 5 và z = 1
Vậy...
Ta thấy \(144=2^4.3^2\)
Ta có : \(2^{x-2}.3^{y-3}.5^{z-1}=144\)
\(=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
\(=>\left(x-2\right)\left(y-3\right)\left(z-1\right)=4.2.0\)
\(=>x-2=4=>x=6\)
\(=>x-3=2=>x=5\)
\(=>z-1=0=>z=1\)
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
cũng dễ thôi
Bài 2: Tìm các số x,y,z biết \(2^{x-2}\cdot3^{y-3}\cdot5^{z-1}=144\)
\(2^{x-2}.3^{y-3}.5^{z-1}=144=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
\(\hept{\begin{cases}2^{x-2}=2^4\\3^{y-3}=3^2\\5^{z-1}=5^0\end{cases}}=>\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}}=>\hept{\begin{cases}x=4+2\\y=2+3\\z=0+1\end{cases}}=>\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
vậy \(\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
Tách số 144 ra ta có :
\(144=2^4.3^2.1=2^4.3^2.5^0\)
Theo đề bài
\(\Rightarrow\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)
Tìm x,y,z biết :
x/y = 3/4 ; y/x = 4/5
x + y + z = 144
đề sai rồi :x/y=3/4,y/z=4/5
X=144:(3+4+5)x3=36
Y=144:(3+4+5)x4=48
Z=144-(36+48)=60
\(2^{x-2}.3^{y-3}.5^{z-1}=144\) hãy tính x , y , z
Dễ thấy: \(144=2^4\cdot3^2=2^4\cdot3^2\cdot5^0\)
\(pt\Leftrightarrow2^{x-2}\cdot3^{y-3}\cdot5^{z-1}=2^4\cdot3^2\cdot5^0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=4\\y-3=2\\z-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=5\\z=1\end{matrix}\right.\)