1. Cho tam giác ABC có 3 góc nhọn, kẻ đường cao AH. Gọi E; F là các điểm đối xứng của H qua các cạnh AB và AC. Đoạn thẳng EF cắt AB và AC tại M và N. Chứng minh MC// EH và NB//FH
cho tam giác ABC có 3 góc 3 góc nhọn, đường cao AH . Vẽ ra ngoài tam giác ABC tam giác ABE và ACF vuông cân A Từ e và f kẻ EK, FN vuông AH
a) CM EK=FN
b) gọi I là giao của EFvaf HA tìm điều kiện của tam giác ABC để EF=2 AI
a) Ta chứng minh tam giác KAE = tam giác HBA
Hai tam giác trên là hai tam giác vuông, có hai cạnh huyền bằng nhau EA = BA (giả thiết). \(\widehat{EAK}=\widehat{HBA}\) (vì đều phụ với góc \(\widehat{BAH}\), góc \(\widehat{EAK}\) phụ với \(\widehat{BAH}\)vì tổng của chúng bằng 180 độ trừ đi góc vuông \(\widehat{EAB}\), còn góc \(\widehat{HBA}\)phụ với \(\widehat{BAH}\) vì là hai góc nhọn của tam giác vuông),
Hai tam giác vuông có hai góc đôi một bằng nhau thì cặp góc còn lại cũng bằng nhau.
Vậy tam giác KAE = tam giác HBA. Suy ra EK = AH.
Chứng minh tương tự: FN = AH
=> EK = FN (=AH)
b) Do EK và FN cùng vuông góc với AH nên EK // FN, mà EK = FN nên EKFN là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)
=> đường chéo EF cắt KN tại trung điểm I của EF.
Nếu tam giác AEF vuông tại A thì EF = 2 AI (với AI là đường trung tuyến) và ngược lại. Khi đó có 4 góc ở đỉnh A kề nhau mà 3 góc bằng 90 độ => Góc \(\widehat{BAC}=90^o\). Vậy Tam giác ABC là tam giác vuông.
Em có góp ý với quản lí :Nếu đã có từ " góc " thì ko cần phải thêm dấu mũ vào tên góc.
VD : " Góc \(BAH\) " chứ ko phải là " Góc \(\widehat{BAH}\) "
Cho tam giác ABC (AB <AC) có 3 góc nhọn nội tiếp trong đường tròn (O; R). Vẽ đường
cao AH của tam giác ABC, đường kính AD của đường tròn. Gọi E, F lần lượt là chân đường vuông
góc kẻ từ C và B xuông đường thẳng AD. M là trung điểm của BC.
a) Chứng minh tứ giác BMOF nội tiếp.
b) Gọi K là giao điểm của AD và BC. Chứng minh KH.ED = KE.BH
a)
Xét (O) có
M là trung điểm của dây BC(gt)
nên OM\(\perp\)BC(Định lí đường kính vuông góc với dây)
Xét tứ giác BMOF có
\(\widehat{BFO}+\widehat{BMO}=180^0\left(90^0+90^0=180^0\right)\)
nên BMOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC ( AB < AC) có 3 góc nhọn nội tiếp (O). AH là đường cao của tam giác ABC. Kẻ đường kính AD của (O). Từ 2 điểm B,C kẻ BE và CF vuông góc với AD lần lượt tại E,F.
Gọi I là trung điểm của BC. Chứng minh IE = IF.
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn (O; R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn. Gọi E, F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC.
Tìm khẳng định sai ?
A. Tứ giác ABHF nội tiếp
B. Tứ giác BMFO nội tiếp.
C. H E / / B D
D. Có ít nhất một khẳng định sai
Chọn đáp án D
* Chứng minh các tứ giác ABHF và BMFO nội tiếp.
- Từ giả thiết suy ra:
=> H và F thuộc đường tròn đường kính AB (quỹ tích cung chứa góc)
Vậy tứ giác ABHF nội tiếp đường tròn đường kính AB
- Gọi M là trung điểm của BC (gt), suy ra: OM ⊥ BC
Khi đó:
Nên M, F thuộc đường tròn đường kính OB(quỹ tích cung chứa góc).
Vậy tứ giác BMOF nội tiếp đường tròn đường kính OB
* Chứng minh HE // BD.
Dễ chứng minh tứ giác ACEH nội tiếp đường tròn đường kính AC.
Và chúng ở vị trí so le trong suy ra: HE // BD
Bài 1 :Cho tam giác ABC nhọn, các đường cao BH,CK. Gọi D và E lần lượt là chân đường vuông góc kẻ từ B,C xuống đường thẳng HK. Chứng minh DK=EH
Bài 2 : Cho tam giác ABC vuông tại A, đường cao AH.Qua trung điểm M của cạnh AC, kẻ MN vuông góc với BC tại N. Gọi K là trung điểm AH. Chứng minh BK vuông góc với AN
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
Cho tam giác ABC có 3 góc nhọn và AB <AC nội tiếp trong đường tròn tâm O. Kẻ đường cao AH và đường kính A A'. Gọi E và F theo thứ tự là chân đường vuông góc kẻ Từ B và C xuống đường kính A A' gọi M là trung điểm B C. Cm MD = ME =MF
Cho tam giác ABC nhọn, đường cao AH (H thuộc BC ), kẻ HI vuông góc AB tại I, trên tia đối của tia IH lấy điểm E sao cho EI bằng HI a, chứng minh AE=AH Cho tam giác ABC nhọn , đường cao AH (H thuộc BC ), kẻ HI vuông góc AB tại I , trên tia đối của tia IH lấy điểm E sao cho EI bằng HI
a, chứng minh AE=AH
b, kẻ HK vuông góc AC tại K , trên tia đối của tia KH lấy điểm F sao cho FK=HK . chứng minh tam giác AEFcân
c, chứng minh HA là phân giác góc MHN
d, chứng minh AH,BN, CM đồng quy
a: Xét ΔAEH có
AB vừa là đường cao, vừa là trung tuyến
=>ΔAEH cân tại A
=>AE=AH
b: Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
=>ΔAHF cân tại A
=>AH=AF=AE
1. Cho tam giác ABC có 3 góc nhọn, kẻ đường cao AH. Gọi E; F là các điểm đối xứng của H qua các cạnh AB và AC. Đoạn thẳng EF cắt AB và AC tại M và N. Chứng minh MC// EH và NB//FH
Cho tam giác ABC có 3 góc nhọn. Gọi AH là đường cao lớn nhất trong ba đường cao. BE là trung tuyến kẻ từ đỉnh B. Cho biết AH=BE.
a) Chứng minh: góc CBE = 30 độ
b) Chứng minh: góc ABC < hoặc = 60 độ.
c) Tam giác ABC thoả mãn điều kiện gì thì góc B= 60 độ.
cho tam giác ABC có 3 góc nhọn, kẻ đường cao AH. Chứng minh sin A + cos A > 1