Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 10 2018 lúc 7:49
Bình luận (0)
TB
Xem chi tiết
NT
13 tháng 1 2021 lúc 20:59

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bình luận (0)
NT
13 tháng 1 2021 lúc 21:32

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

Bình luận (0)
LL
Xem chi tiết
DP
6 tháng 2 2022 lúc 17:21

Chứng minh với mọi số nguyên dương n thì

3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10

                                      Giải

3^n + 2 – 2^n + 2 + 3^n – 2^n

= 3^n+2 + 3^n – 2^n + 2 -  2^n

= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )

= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )

= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )

= 3^n . 10 – 2^n . 5

= 3^n.10 – 2^n -1.10

= 10.( 3^n – 2^n-1)

Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
KN
6 tháng 4 2018 lúc 20:31

theo mình nhớ thì đề bài có lũy thừa hay sao ý

Bình luận (0)
TK
6 tháng 4 2018 lúc 20:36

3n+2-2n+2 +3n-2n

=(3n+2+3n)+(-2n+2 -2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n-2n-1)chia hết cho 10

Vậy 3n+2-2n+2 +3n-2chia hết cho 10

Bình luận (0)
WH
6 tháng 4 2018 lúc 20:37

Đề phải là: chứng minh 3n+2-2n+2+3n-2n chia hết cho 10

Trả lời

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot\left(9+1\right)-2^n\cdot\left(4+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Vậy...

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Bình luận (0)
LV
Xem chi tiết
NT
4 tháng 10 2021 lúc 23:59

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

Bình luận (0)
HN
Xem chi tiết
AH
13 tháng 12 2021 lúc 15:55

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

Bình luận (0)
LN
Xem chi tiết
NH
14 tháng 12 2022 lúc 20:42

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)

Bình luận (0)
KK
Xem chi tiết
NT
14 tháng 6 2022 lúc 13:58

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Bình luận (0)