Tìm n \(\in\) N, biết :
n2 + 2.n + 12
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
Bài 4: Tìm số các nguyên a, n biết:
a) a + 2 là ước của 7.
b) 2a + 1 là ước của 12.
c) n + 5 ⋮ n − 2.
d) 3n + 2 ⋮ 2n − 1.
e) n2 + 2n − 7 ⋮ n + 2.
Giúp em với, em cảm ơn.
a, Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
a +2 | -7 | -1 | 1 | 7 |
a | -9 | -3 | -1 | 5 |
Theo bảng trên ta có:
\(a\) \(\in\) { -9; -3; -1; 5}
b, 2a + 1 \(\in\) Ư(12)
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
lập bảng ta có:
2a+1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
a
|
-11/2 loại |
-7/2 loại |
-5/2 loại |
-2 nhận |
-3/2 loại |
-1 nhận |
0 nhận |
1/2 loại |
1 nhận |
3/2 loại |
5/2 loại |
11/2 loại |
Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:
a \(\in\) {- 2; - 1; 0; 1}
n + 5 \(⋮\) n - 2
n - 2 + 7 ⋮ n - 2
7 ⋮ n -2
Ư(7) ={ -7; -1; 1; 7}
Lập bảng ta có:
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Theo bảng trên ta có:
n \(\in\) { -5; 1; 3; 9}
d,
3n + 2 \(⋮\) 2n - 1
(3n + 2).2 ⋮ 2n -1
6n + 4 ⋮ 2n -1
(6n - 3) + 7 ⋮ 2n -1
3.(2n -1) + 7 ⋮ 2n -1
7 ⋮ 2n - 1
Ư(7) = { -7; -1; 1; 7}
lập bảng ta có:
2n - 1 | -7 | -1 | 1 | 7 |
n | -3 | 0 | 1 |
4 |
Theo bảng trên ta có:
n \(\in\) {-3; 0; 1; 4}
SOS
bài 1: chứng minh
Sn = 12 + 22 + 32 + ... + n2 = n.(n + 1).(2n+1)/1
bài 2: tìm x biết
a) (x+1) + (x+2) + (x+3) + ... +(x+10) = 5070
b) 1 + 2 + 3 + ... + x = 820
❤mong mn giúp mình ạ ❤
Bài 1 :
A = 12 + 22 + 32 +....+n2
A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)
A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n
A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n
A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]
A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]
A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)
A =(n+1)n/2 + 1/3.(n-1)n(n+1)
A = n(n+1)[1/2 + 1/3 .(n-1)]
A = n.(n+1) \(\dfrac{3+2n-2}{6}\)
A= n.(n+1)(2n+1)/6
Bài 2 :
a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070
(x+10 +x+1).{( x+10 - x -1): 1 +1):2 = 5070
(2x + 11)10 : 2 = 5070
( 2x + 11)5 = 5070
2x+ 11 = 5070:5
2x = 1014 - 11
2x = 1003
x = 1003 :2
x = 501,5
b, 1 + 2 + 3 +...+x = 820
( x + 1)[ (x-1):1 +1] : 2 = 820
(x +1).x = 820 x 2
(x +1).x = 1640
(x +1) .x = 40 x 41
x = 40
Với n là số tự nhiên, chứng minh đẳng thức:
n + 1 2 + n 2 = n + 1 2 - n 2
Viết đẳng thức trên khi n là 1, 2, 3, 4, 5, 6, 7
Cho phân số: D = n2+3n-21/2-n với n Z a) Tính D biết n2 – 3n = 0 b) Tìm tất cả các giá trị của n để D nhận giá trị nguyên.
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
Bài 6. Tìm số nguyên n biết:
a) – 13 là bội của n – 2
b) 2n - 1 là ước của 3n + 2
c) n2 + 2n - 7 chia hết cho n + 2
d) n2+3n−5 là bội của n−2.
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.
Bài 6. Tìm số nguyên n biết:
a) (n + 3)(n2 + 1) = 0;
b) (n – 1)(n2 – 4) = 0 Mik sẽ tick nha
a) \(\left(n+3\right)\left(n^2+1\right)=0\)
\(\Rightarrow n+3=0\Rightarrow n=-3\)(do \(n^2+1\ge1>0\))
b) \(\left(n-1\right)\left(n^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-2\\n=2\end{matrix}\right.\)
\(a,\Leftrightarrow\left[{}\begin{matrix}n+3=0\\n^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-3\left(tm\right)\\n^2=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow n=-3\\ b,\Leftrightarrow\left[{}\begin{matrix}n-1=0\\n^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=2\\n=-2\end{matrix}\right.\)