chứng minh biểu thức luôn dương với a
a)x4-x2+3b)x2-x+1c)x2+x+2d)(x+3)(x-11)+20Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
C=x2-2*x*y+3*y2-2*x-10*y+20
mik cần gấp
a)Chứng minh thuoqng của phép chia sau luôn có giá trị dương:
(x4-2x3+6x2+x+14):(x2-3x+7)
b)Cho x+y=1.Tính giá trị biểu thức A=x3+3xy+y3
\(a,x^4-2x^3+6x^2+x+14\\ =\left(x^4-3x^3+7x^2\right)+\left(x^3-3x^2+7x\right)+\left(2x^2-6x+14\right)\\ =\left(x^2-3x+7\right)\left(x^2+x+2\right):\left(x^2-3x+7\right)=x^2+x+2\)
Ta có \(x^2+x+2=x^2+x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)
Vậy ...
\(b,A=x^3+3xy+y^3\\ A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\\ A=x^2-xy+y^2+3xy\\ A=x^2+2xy+y^2=\left(x+y\right)^2=1\)
Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều
Chứng minh biểu thức : B=x2 - 12x + 28 luôn dương với mọi giá trị x
B=x^2-12x+6^2-8
=(x-6)^2-8
Biểu thức này ko thể luôn dương nha bạn
Chứng minh rằng biểu thức:
A = x(x – 6) + 10 luôn dương với mọi x
B = x2 – 2x + 9y2 – 6y + 3 luôn dương với mọi x, y
`A=x(x-6)+10=x^2-6x+10`
`=x^2 -2.x .3 + 3^2 + 1`
`=(x-3)^2+1 >0 forall x`
`B=x^2-2x+9y^2-6y+3`
`=(x^2-2x+1)+(9y^2-6y+1)+1`
`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với mik đang cần gấp
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Chứng minh rằng biểu thức Q = x 2 - 1 1 x - 1 - 1 x + 1 + 1 luôn dương với x ≠ ± 1
Do x2≥ 0 ∀ x ≠ ±1 nên Q=x2 + 1 ≥ 1 ∀ x ≠ ±1
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0