a,5x.(x-1)-3y.(x-1)
b,7x^2-7y^2
c,x^2y^2.z+xy^2z^2+x^2yz^2
a) cho x^2 = y^2+z^2. chứng minh: (5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
b) cho 10x^2=10y^2+z^2. chứng minh: (7x-3y+2z)(7x-3y-2z)=(3x-7y)^2
1.Thu gọn ( tính tổng )
a) \(^{2x^2yz+4xy^2z-10x^2yz+xy^2z-2xyz}\)
b) \(x^3-5xy+3x^3+xy-x^2+\frac{1}{2}-x^2\)
c) \(3x^2y^2z^2+x^2y^2z^2\)
2. Tính
a) \(15x^4+7x^4+\left(-20x\right)x^2\)tại x = -1
b) \(23x^3y^3+17x^3y^3+\left(-50x^3\right)y^3\)tại x = 1 ; y = -1
Bạn nào làm đầu và đúng mình tick nha
Xin cảm ơn
a, \(2x^2yz+4xy^2z-10x^2yz+xy^2z-2xyz\)
\(=2x^2y+\left(4xy^2z+xy^2z\right)-10x^2yz-2xyz\)
\(=2x^2y+5xy^2z-10x^2yz-2xyz\)
b, \(x^3-5xy+3x^3+xy-x^2+\frac{1}{2}-x^2\)
\(=\left(x^3+3x^3\right)+\left(-5xy+xy\right)+\left(-x^2-x^2\right)+\frac{1}{2}\)
\(=4x^3-4xy-2x^2+\frac{1}{2}\)
c, \(3x^2y^2z^2+x^2y^2z^2=4x^2y^2z^2\)
Bài 1 :
a) 2x2yz + 4xy2z - 10x2yz + xy2z - 2xyz
= ( 2 - 10 )x2yz + ( 4 + 1 )xy2z - 2xyz
= -8x2yz + 5xy2z - 2xyz
b) 3x2y2z2 + x2y2z2 = ( 3 + 1 )x2y2z2 = 4x2y2z2
Bài 2.
a) 15x4 + 7x4 + ( -20x )x2 = ( 15 + 7 )x4 - 20xx2 = 22x4 - 20x3
Thay x = -1 vào đa thức ta có :
22 . ( -1 )4 - 20 . ( -1 )3
= 22 . 1 - 20 . ( -1 )
= 22 - ( -20 )
= 22 + 20
= 42
Vậy giá trị của đa thức = 42 khi x = -1
b) 23x3y3 + 17x3y3 + ( -50x3 )y3 = 23x3y3 + 17x3y3 - 50x3y3 = ( 23 + 17 - 50)x3y3 = -10x3y3
Thay x = 1 ; y = -1 vào đơn thức ta có :
-10 . 13 . ( -1 )3
= -10 . 1 . ( -1 )
= 10
Hô hô thiếu ý b) :|
Chứng minh đẳng thức
a, (x-y-z)^2=x^2 + y^2+z^2-2xy+2yz-2zx
b, ( x+y-z)^2=x^2+y^2+z^2+2xy-2yz-2zx
c, ( x-y)(x^3+x^2y+xy^2+y^3)=5x(x+1)
d, ( x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
Giúp mk vs ạ mk đang cần
a, b, nhân vào là ra à
c, nghe cứ là lạ
d, cũng nhân là ra hà
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)
a) Ta có: \(VT=\left(x-y-z\right)^2\)
\(=\left(x-y-z\right)\left(x-y-z\right)\)
\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)
=VP(đpcm)
b) Ta có: \(VT=\left(x+y-z\right)^2\)
\(=\left(x+y-z\right)\left(x+y-z\right)\)
\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
=VP(đpcm)
c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
=VP(đpcm)
d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
=VP(đpcm)
Thu gọn và tính giá trị biểu thức
a) A= 3x^4 + 1/3xyz - 3x^4 - 4/3xyz + 2x^2y - 6z khi x=1; y=3 và z=1/3
b) B= 4x^3 - 2/7xyz - 4x^3 - 4/3xyz + 4x^2y khi x=-1; y=2 và z=-1/2
c) C= 4x^2 + 1/2xyz - 2/3xy^2z - 5x^2yz + 3/4xyz khi x=-1; /y/=2 và z=1/2
`#3107`
`a)`
`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)
`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`
`= -xyz + 2x^2y - 6z`
Thay `x = 1; y = 3` và `z = 1/3` vào A
`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`
`= -1 + 6 - 2`
`= 6 - 3`
`= 3`
Vậy, `A=3`
`b)`
`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)
`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`
`= -34/21 xyz + 4x^2y`
Thay `x = -1; y = 2` và `z = -1/2` vào B
`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`
`= -34/21 + 8`
`= 134/21`
Vậy, `B = 134/21`
`c)`
`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)
`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `
`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`
Ta có:
`|y| = 2`
`=> y = +-2`
Thay `x = -1; y = 2` và `z = 1/2` vào C
`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`
`= 4 - 5/4 + 4/3 - 5`
`= -11/12`
Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`
Thay `x = -1; y = -2; z = 1/2`
`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`
`= 4 + 5/4 + 4/3 + 5`
`= 139/12`
Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`
tìm nghiệm nguyên
a)x2 + 2y2 +2z2 -2xy -2yz- 2z =a
b) x2 + y2 + z2 = xy+ 3y + 2z- 4
Tìm a, b, x, y, z biết:
1) và a + b = 21; 2) và a – b = -5.
3) và 5x + y - 2z = 28 4) 3x = 2y; 7x = 5z và x – y + z = 32
5) và 2x -3y + z = 6.
thực hiện phép tính
a)\(2x\left(x^2-5x-1\right)+\left(3x-1\right)x\)
b)\(\left(2x^3yz-7x^2yz\right)\left(-5xyz\right)+\left(x^2y^2z+xy^2z\right)4x^2z\)
tìm các số x,y, z biết
a, x/10=y/6=z/21 và 5x=y-2z=28
b, 3x=2y; 7y=5z; x-y+z=32
c,x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
d,x/2=y/3=z/5 và xyz=810
Mọi người ơi , giúp em 2 bài này nha! Theo hằng đẳng thức ạ! ( dấu "^" là mũ , " - " là trừ , dấu "." là nhân còn mấy cái sô với chữ em viết liền nhau là nó nhân với nhau nha mọi người )
Bài 1
a) cho x^2 = y^2 + z^2 . Chứng minh rằng: ( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) = ( 3x - 5y )^2 ( tất cả mũ 2 nha mn)
b ) cho 10x^2 ( x mũ 2 ) = 10y^2 ( y mũ 2 ) + z^2 . Chứng minh rằng : ( 7x - 3y + 2z ) . ( 7x - 3y - 2z ) = ( 3x - 2y )^2 ( tất cả mũ 2 nha)
c ) Cho x+y = a , x^2 + y^2 =b ; x^3 + y^3 = c. Chứng minh rằng : a^2 - 3ab ( 3 nhân a nhân b nha ) + 2c = 0
Bài 2 : Tìm x:
a) x.(x+4) . ( 4-x ) + ( x-5) . (x^2 + 5x + 25 ) = 3
b) ( x+1)^3 - ( x - 1)^3 - 6.( x-1)^2 = -10 ( âm 10 nha)