3 mũ n+2-2 mũ n+2+3 mũ n-2 mũ n chứng tỏ rằng 3 mũ n+2-2 mũ n+2+3 mũ n-2 mũ n chia hết cho 10
Chứng minh rằng :
24 mũ 54* 54 mũ 24 * 2 mũ 10 chia hết cho 72 mũ 63
3 mũ n+2 - 2 mũ n+2 + 3 mũ n -2 mũ n chia hết cho 10
mình ko biết viết mũ nên ko được đẹp mắt lắm , hạn bài sắp hết rồi . giúp mình nha
Bài 3: Chứng minh rằng với mọi số tự nhiên n thì:
1) 3 mũ n+2 - 2n+2 - 3n - 2n chia hết cho 10 2) 3 mũ n+2 - 2 mũ n+4 + 3 mũ n + 2 mũ n chia hết cho 30
Bài 4: Chứng minh rằng: 3 mũ n+1 + 3 mũ n+2 + 3 mũ n+3 chia hết cho 13 với mọi số tự nhiên n.
Bài 5: Chứng minh rằng:
1) 2 + 2 mũ 2 + 2 mũ 3 + ...+ 2 mũ 60 chia hết cho 15 2) 1+ 3+ 3 mũ 2 + 3 mũ 3 + ...+ 3 mũ 119 chia hết cho 13
Chứng minh rằng
Với mọi n nguyên dương thì 3 mũ n+2 -2 mũ n+2 + 3 mũ 2 ;trừ 2 mũ n chia hết cho 10
Bài 1: Cho A=3 + 3 mũ 2 + 3 mũ 3 + ... +3 mũ 2010.
a, Tìm c/s tận cùng của A.
b, Chứng tỏ 2A+ 3 là 1 lũy thừa của 3.
c,Tìm x thuộc N biết: 2A-3=3 mũ x.
d, CMR A chia hết cho 13.
Bài 2: Chứng minh rằng:
a, 942 mũ 60 - 351 mũ 37 chia hêt cho 5.
b ( n + 2009) . ( n+ 2010) chia hết cho 2 với mọi STN n.
Bài 4: Tìm n thuộc N biết:
a, ( n + 9) chia hết cho ( n + 5)
b, 2 mũ n - 3 hết mũ - 2 mũ n = 448
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
A=45 mũ n+2 mũ 45+n mũ 2 [ n thuộc N*] chứng tỏ rằng A không chia hết cho 10
bai nay to ko biet sfdavvasva
bạn nào bik thì giải bài này giúp mik vói ak :
a) a=2 mũ 11 + 2 mũ 12 +2 mũ 13+2 mũ 14+2 mũ 15 +2 mũ 16: hãy chứng tỏ a chia hết cho 3 và 7
b)Tìm n , bik :
n+7 chia hết cho n
n+11 chia hết cho n+9
2n+13 chia hết cho n+3
b) \(n+7⋮n\)
Mà: \(n⋮n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)
Vậy giá trị n cần tìm là: n=1;-1;7;-7
\(n+11⋮n+9\)
\(\Rightarrow\left(n+9\right)+2⋮n+9\)
Do: \(n+9⋮n+9\)
\(\Rightarrow2⋮n+9\)
\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
Lập bảng giá trị:
n+9 | 1 | 2 | -1 | -2 |
n | -8 | -7 | -10 | -11 |
Vậy giá trị n cần tìm là: n=-8;-7;-10;-11
\(2n+13⋮n+3\)
\(\Rightarrow2\left(n+3\right)+7⋮n+3\)
Vì: \(2\left(n+3\right)⋮n+3\)
\(\Rightarrow7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng giá trị:
n+3 | 1 | 7 | -1 | -7 |
n | -2 | 4 | -4 | -10 |
Vậy giá trị n cần tìm là: n=-2;4;-4;-10
Chứng minh với mọi số nguyên dương n thì
3 mũ n+2-2 mũ n+2+3 mũ n-2 mũ n
chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
=\(\left(3^{n+2}+3^n\right)+\left(-2n^{n+2}-2^n\right)\)
=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
=\(3^n.10-2^n.5\)
=\(3^n.10-2^{n-1}.10\)
=\(10.\left(3^n-2^{n-1}\right)\)
=>đpcm
1, chứng tỏ
a,A= ( 81 mũ 7 - 27 mũ 9 -91 mũ 3 ) chia hết cho 45
b, B= 3+3 mũ 2 +.....3 mũ 2016 chia hết co 12 và 39
c, C=(n+10).(n+2) chia hết cho 6
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết
b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 , Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11
b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13