Những câu hỏi liên quan
DA
Xem chi tiết
ND
Xem chi tiết
AH
31 tháng 7 2021 lúc 10:32

1.

ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$

PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)

\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)

\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)

Bình luận (0)
AH
31 tháng 7 2021 lúc 10:33

2.

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$

$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}=0$

$\Leftrightarrow x=0$

Thử lại thấy thỏa mãn 

Vậy $x=0$

 

Bình luận (0)
AH
31 tháng 7 2021 lúc 10:44

3.

ĐKXĐ: $x\geq -1$

PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)

\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)

\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)

\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)

Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$

$\Rightarrow x^2+4034+5> 4x+4034$

$\Rightarrow \text{VP}> \text{VT}$

Do đó pt vô nghiệm.

 

Bình luận (0)
PT
Xem chi tiết
AN
27 tháng 8 2016 lúc 11:57

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

Bình luận (0)
ND
20 tháng 9 2016 lúc 18:32

x+y =0

=> P = 1

Bình luận (0)
H24
20 tháng 9 2016 lúc 19:40

x+y=0

=>P=1

Bình luận (0)
NN
Xem chi tiết
TM
Xem chi tiết
LT
18 tháng 12 2016 lúc 8:37

khó hiểu làm sao ?

Bình luận (0)
AN
18 tháng 12 2016 lúc 21:03

Đề chỉ nhiêu đâu thôi hả

Bình luận (0)
DM
19 tháng 12 2016 lúc 17:45

khó hỉu quá trời

Bình luận (0)
JE
Xem chi tiết
NL
3 tháng 4 2020 lúc 18:56

a/

\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
3 tháng 4 2020 lúc 19:02

b/

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Rightarrow1< x\le2\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
3 tháng 4 2020 lúc 19:06

d/

ĐKXĐ: \(\left\{{}\begin{matrix}x^3-4x\ge0\\\frac{1+x}{x}-2\ge0\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)\left(x+2\right)\ge0\\\frac{1-x}{x}\ge0\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}-2\le x\le0\\x\ge2\end{matrix}\right.\\0< x\le1\\x\ne0\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ

Vậy BPT đã cho vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
AN
29 tháng 11 2016 lúc 16:25

Mình có ý tưởng vầy nè. Bạn phát triên nó xe sao

Điều kiện \(-1\le x\le1\)

Đặt \(\hept{\begin{cases}!x!=a\left(0\le a\le1\right)\\\sqrt{1-x^2}=b\left(0\le b\le1\right)\end{cases}\Rightarrow a^2+b^2=1}\)

\(BPT\Leftrightarrow2ab+\left(1-k\right)\left(a+b\right)+2-k\le0\)

\(\Leftrightarrow k\ge\frac{2ab+a+b+2}{a+b+1}\)

Vậy giờ bạn làm bài khác nè

Tìm GTNN của \(\frac{2ab+a+b+2}{a+b+1}\)

Với \(\hept{\begin{cases}\left(0\le a\le1\right)\\\left(0\le b\le1\right)\\a^2+b^2=1\end{cases}}\)

Bình luận (0)
BV
29 tháng 11 2016 lúc 16:42

Ý tưởng của alibaba nguyễn gần đúng như ý tưởng của cô. 
Nhưng thay vì đưa về hệ, cô đặt \(\left|x\right|+\sqrt{1-x^2}=t\) , khi đó \(1\le t\le\sqrt{2}\)
Sau đó rút k theo t ta được \(k\ge\frac{t^2+t+1}{t+1}=t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
Khi đó giá trị nhỏ nhất mà k cần đạt chính là GTLN của \(t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).

Bình luận (0)
H24
29 tháng 11 2016 lúc 17:17

dat an phu viet cho gon (1-k)= t cho gon IxI<=1

IxI=a

\(\sqrt{1-x^2}=b\)

\(0\le a\le1\)

\(0\le b\le1\)

\(1\le a+b\le\sqrt{2}\)

\(a^2+b^2=1\)

\(\left(a+b\right)^2+t\left(a+b\right)\le0\)

\(\left(a+b\right)\left[\left(a+b\right)+t\right]\le0\)

\(\Rightarrow t\le0\&ItI\le\left(a+b\right)\)

\(\Rightarrow t\le-\left(a+b\right)\)

\(\Rightarrow t\le-1\Rightarrow k\ge2\)

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
NU
6 tháng 2 2020 lúc 7:58

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

Bình luận (0)
 Khách vãng lai đã xóa
YN
6 tháng 2 2020 lúc 9:26

Thông cảm máy chụp đểu

Bình luận (0)
 Khách vãng lai đã xóa