Tính:
a) \(\frac{120}{40^3}^3\); b) \(\frac{390}{130^4}^4\); c) \(\frac{3}{\left(0,375\right)^2}^2\)
\(\frac{120^3}{40^3}\)
\(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27\)
Tính:
a)\(\frac{{ - 1}}{6} + 0,75\);
b)\(3\frac{1}{{10}} - \frac{3}{8}\);
c)\(0,1 + \frac{{ - 9}}{{17}} - \left( { - 0,9} \right)\).
a)\(\frac{{ - 1}}{6} + 0,75 = \frac{{ - 1}}{6} + \frac{3}{4} = \frac{{ - 2}}{{12}} + \frac{9}{{12}} = \frac{7}{{12}}\);
b)\(3\frac{1}{{10}} - \frac{3}{8} = \frac{{31}}{{10}} - \frac{3}{8} = \frac{{124}}{{40}} - \frac{{15}}{{40}} = \frac{{109}}{{40}}\);
c)
\(\begin{array}{l}0,1 + \frac{{ - 9}}{{17}} - \left( { - 0,9} \right) = \frac{1}{{10}} + \frac{{ - 9}}{{17}} + \frac{9}{{10}}\\ = (\frac{1}{{10}} + \frac{9}{{10}}) + \frac{{ - 9}}{{17}} = 1 + \frac{{ - 9}}{{17}} =\frac{{ 17}}{{17}}+\frac{{ - 9}}{{17}}= \frac{8}{{17}}\end{array}\)
Tính:
a) \(0,6 + \left( {\frac{3}{{ - 4}}} \right)\)
b) \(\left( { - 1\frac{1}{3}} \right) - \left( { - 0,8} \right).\)
a)
\(\begin{array}{l}0,6 + \left( {\frac{3}{{ - 4}}} \right) = \frac{6}{{10}} + \left( {\frac{{ - 3}}{4}} \right)\\ = \frac{{12}}{{20}} + \left( {\frac{{ - 15}}{{20}}} \right) = \frac{{12 + \left( { - 15} \right)}}{{20}}\\ = \frac{{ - 3}}{{20}}\end{array}\)
b)
\(\begin{array}{l}\left( { - 1\frac{1}{3}} \right) - \left( { - 0,8} \right) = \frac{{ - 4}}{3} + \frac{8}{{10}}\\ = \frac{{ - 4}}{3} + \frac{4}{5} = \frac{{ - 20}}{{15}} + \frac{{12}}{{15}} = \frac{{ - 8}}{{15}}.\end{array}\)
a: =0,6-0,75=-0,15
b: \(=-\dfrac{4}{3}+\dfrac{4}{5}=\dfrac{-20+12}{15}=-\dfrac{8}{15}\)
Tính:
a) \({\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\)
b) \(4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\)
a)
\(\begin{array}{l}{\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\\ = {\left( {\frac{4}{4} + \frac{2}{4} - \frac{1}{4}} \right)^2}.\left( {\frac{{14}}{7} + \frac{3}{7}} \right)\\ = {\left( {\frac{5}{4}} \right)^2}.\frac{{17}}{7}\\ = \frac{{25}}{{16}}.\frac{{17}}{7}\\ = \frac{{425}}{{112}}\end{array}\)
b)
\(\begin{array}{l}4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\\ = 4:{\left( {\frac{3}{6} - \frac{2}{6}} \right)^3}\\ = 4:{\left( {\frac{1}{6}} \right)^3}\\ = 4:\frac{1}{{216}}\\ = 4.216\\ = 864\end{array}\)
Tính:
a)\(\frac{120^3}{40^3}\)
b)\(\frac{3^2}{\left(0.375\right)^2}\)
a) \(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27\)
b) \(\frac{3^2}{0,375^2}=\left(\frac{3}{0,375}\right)^2=8^2=64\)
HỌC TỐT
Toán lớp 7???
\(a.\)\(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27\)
\(b.\)\(\frac{3^2}{\left(0,375\right)^2}=\left(\frac{3}{0,375}\right)^2=8^2=64\)
~ Rất vui vì giúp đc bn ~
Tính:A=-1-2+3+4-5-6+7+8-......+119+120-121
Giúp mình nhanh nhé .Mình đang rất cần
A= -1 - (2-3-4+5) - (6+7+8-9) -... - (198 -199-120+121)
A= -1 - 0-0-...-0
A= -1
nhớ k giùm mk
Tính:
a) \({\log _3}3\sqrt 3 ;\)
b) \({\log _{\frac{1}{2}}}32.\)
a: \(=log_3\left(\sqrt{3}\right)^3=log_3\left(3^{\dfrac{1}{2}}\right)^3=log_3\left(3^{\dfrac{3}{2}}\right)=\dfrac{3}{2}\)
b: \(log_{\dfrac{1}{2}}32=log_{\dfrac{1}{2}}\left(\dfrac{1}{2}\right)^{-5}=-5\)
Tính:
a) \({\left( {\frac{1}{5}} \right)^{ - 2}};\)
b) \({4^{\frac{3}{2}}};\)
c) \({\left( {\frac{1}{8}} \right)^{ - \frac{2}{3}}};\)
d) \({\left( {\frac{1}{{16}}} \right)^{ - 0,75}}.\)
a: \(\left(\dfrac{1}{5}\right)^{-2}=25\)
b: \(4^{\dfrac{3}{2}}=8\)
c: \(\left(\dfrac{1}{8}\right)^{-\dfrac{2}{3}}=\left(\dfrac{1}{2}\right)^{3\cdot\dfrac{-2}{3}}=\left(\dfrac{1}{2}\right)^{-2}=4\)
d: \(\left(\dfrac{1}{16}\right)^{-0.75}=\left(\dfrac{1}{2}\right)^{4\cdot\left(-0.75\right)}=\left(\dfrac{1}{2}\right)^{-3}=8\)
Không sử dụng máy tính, hãy tính:
a) \({( - 3)^8}\) biết \({( - 3)^7} = - 2187\)
b) \({\left( { - \frac{2}{3}} \right)^{12}}\) biết \({\left( { - \frac{2}{3}} \right)^{11}} = \frac{{ - 2048}}{{177147}}\)
\(\begin{array}{l}a){( - 3)^8} = {( - 3)^7}.( - 3) = - 2187.( - 3) = 6561\\b){\left( { - \frac{2}{3}} \right)^{12}} = {\left( { - \frac{2}{3}} \right)^{11}}.\left( { - \frac{2}{3}} \right) = \frac{{ - 2048}}{{177147}}.\frac{{ - 2}}{3} = \frac{{4096}}{{531441}}\end{array}\)
Tính:
a) \({\log _3}\sqrt[3]{3}\);
b) \({\log _{\frac{1}{2}}}8\);
c) \({\left( {\frac{1}{{25}}} \right)^{{{\log }_5}4}}\).
a) \(log_3\sqrt[3]{3}=\dfrac{1}{2}\)
b) \(log_{\dfrac{1}{2}}8=-3\)
c) \(\left(\dfrac{1}{25}\right)^{log_54}=\dfrac{1}{16}\)