cho A= ( căn 7-2)/(7+2 căn 7) , B= 1/ căn 7+2, C= 1/ căn 7
tính S=A-B+C
cho A= ( căn 7-2)/(7+2 căn 7) , B= 1/ căn 7+2, C= 1/ căn 7
tính S=A-B+C
Bài1: Rút gọn biểu thức A, A= ( căn 2/3 + căn 50/3 - căn 24) . căn 6 B, B= căn 14 - căn 7 / căn 2-1 + căn 15 - căn 5 / căn 3 -1 ) : 1/ căn 7 - căn 5 b, So sánh A và B Bài 2: Giải các phương trình sau a, căn 3x -5 căn 12x + 7 căn 27x =12 b, x / 1+ căn 1+x -1
Trục căn ở mẫu:
a) 7 căn 3 - 5 căn 11 trên 3 căn 3 - 7 căn 11
b) 1 trên căn 3 + căn 5 + căn 7
c) 1 trên căn 2 + căn 3 - căn 5
d) 6 trên căn ba của 7 - căn ba của 4
4 trên 1 - căn ba của 5
Mình muốn hỏi bài toán lớp 9
a) 2/ 3+ căn 5 + 4/3 - căn 5
b) 6/7 + căn 3 - 6/7 - căn 3 + 1/2
c) 3/ căn 3 + căn 2 - 2/ căn 3 - căn 2
bấm máy tính là ra liền đó chị ơi
a, 2
b, \(\frac{1}{2}\)
c,\(\sqrt{3}\)
mk k chắc lém nhưng bn cho mk nha mk tl đầu tiên
con trinh kia mày không giúp nó sao còn bựa ra hả
1)Cho a,b,c là độ dài 3 tam giác . cmr : căn a+b-c + căn b+c-a + căn a+c-b bé hơn hoặc bằng căn a + căn b +căn c
2) cho a và b thỏa mãn 3a-4b=7 .cmr :3a bình + 4a bình lớn hơn hoặc bằng 7
Rút gọn biểu thức
a, 3 căn 18 - căn 32 +4 căn 2 +căn 162
b, 2 căn 48 - 4 căn 27+ căn 75 + căn 12
c, căn 21+8 căn 5 + căn 21 -8 căn 5
d,(căn 14 - căn 7/căn 2-1 + căn 15 - căn 5/ căn 3-1 )÷1/căn 7- căn 5
a: \(=9\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}=18\sqrt{2}\)
b: \(=8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
c: \(=2\sqrt{21}\)
K=((a+14*căn a +100)/(a+ căn a-42)+(căn a+6)/( căn a +7)+(căn a+7)/(6-căn a))/(1-(căn a-7)/(căn a-6))
a) Rút gọn K
b) Tìm a để K= 2
c) Tìm giá trị nhỏ nhất của K
có bộ gõ kí hiệu Toán mà :))
ĐK : a >= 0 ; a khác 36
\(K=\left[\frac{a+14\sqrt{a}+100}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}+\frac{\left(\sqrt{a}+6\right)\left(\sqrt{a}-6\right)}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}-\frac{\left(\sqrt{a}-7\right)\left(\sqrt{a}+7\right)}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\right]\div\left(\frac{\sqrt{a}-6}{\sqrt{a}-6}-\frac{\sqrt{a}-7}{\sqrt{a}-6}\right)\)
\(=\frac{a+14\sqrt{a}+100+a-36-a+49}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\div\frac{1}{\sqrt{a}-6}\)
\(=\frac{a+14\sqrt{a}+113}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\cdot\left(\sqrt{a}-6\right)=\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}\)
Để K = 2 thì \(\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}=2\Rightarrow a+14\sqrt{a}+113=2\sqrt{a}+14\Leftrightarrow a+12\sqrt{a}+99=0\)
Với a >= 0 thì \(a+12\sqrt{a}+99\ge99>0\)=> Không có giá trị x thỏa mãn K = 2
Ta có : \(K=\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}=\frac{\left(a+14\sqrt{a}+49\right)+64}{\sqrt{a}+7}=\frac{\left(\sqrt{a}+7\right)^2+64}{\sqrt{a}+7}\)
\(=\left(\sqrt{a}+7\right)+\frac{64}{\sqrt{a}+7}\ge2\sqrt{\left(\sqrt{a}+7\right)\cdot\frac{64}{\sqrt{a}+7}}=16\)( bđt AM-GM )
Dấu "=" xảy ra <=> \(\sqrt{a}+7=\frac{64}{\sqrt{a}+7}\Rightarrow a=1\left(tm\right)\). Vậy MinK = 16
a ) ( 4 - căn 7 ) 2 = 23 - 8 căn 7
b) căn 11 - 2 căn 10 - căn 10 = -1
c) căn 4 + 2 căn 3 - căn 4 - 2 căn 3 = 2