Cho a+b+c=a^2+b^2+c^2=1 , a/x=b/y=c/z. Chứng minh xy +yz+xz=0
Lời giải:
Ta có:
$(a+b+c)^2-(a^2+b^2+c^2)=1-1=0$
$\Leftrightarrow 2(ab+bc+ac)=0$
$\Leftrightarrow ab+bc+ac=0$
Đặt $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t\Rightarrow x=\frac{a}{t}, y=\frac{b}{t}, z=\frac{c}{t}$
Do đó:
$xy+yz+xz=\frac{ab}{t^2}+\frac{bc}{t^2}+\frac{ac}{t^2}$
$=\frac{1}{t^2}(ab+bc+ac)=\frac{1}{t^2}.0=0$
Ta có đpcm.
Cho \(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\) với x, y, z thuộc Z và x, y, z khác 0. Chứng minh:\(ax+by+cz⋮x+y+z\); a, b, c, d là các số nguyên khác nhau
\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)
1 , Cho a + b + c = 2014 và ( 1 / a + b ) + ( 1 / b+ c ) + ( 1 / c + a ) = 1 / 9 . Tính S = ( a / b + c ) + ( b / c + a ) + ( c / a + b )
2 , Cho z , y , z là các số khác 0 và x^2 = yz , y^2 = xz , z^2 = xy . Chứng minh rằng x = y = z
Bai1:
1) Tìm x;y;z biết; (xy+1)/9=(xz+2)/15=(yz+3)/27 và xy+xz+yz=11
2) Biết (bz-cy)/a= (cx-az)/b=(ay-bx)/c (a,b,c khong bang 0). Chung minh rang x/a=y/b=z/c
cho a b c và x y z thỏa mãn a+b+c=1(1) a^2+b^2+c^2=1(2), x/a=y/b=z/c(3). Cm xy+yz+xz=0
Cho x,y,z,a,b,c khác 0 và \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\).Chứng minh rằng \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)
Giúp tôi giải toán:
Cho y2 +yz+z2=a2; x2 +xz+z2=b2; x2 +xy+y2=c2 và xy+yz+zx=0
Chứng minh rằng: (a+b+c)(a+b-c)(b+c-a)(c+a-b)=0
Tôi xin chân thành cảm ơn!
tôi ms lớp 7
tick nhé mọi người
cho \(a+b+c=a^2+b^2+c^2=1;\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
chứng minh : \(xy+yz+xz=0\)
Ta có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Rightarrow2\left(xy+yz+xz\right)=0\)
\(\Rightarrow xy+yz+xz=0\left(đpcm\right)\)
Chúc bạn học tốt!
Cho a,b,c > 0 và các số x,y,z dương . CHứng minh rằng
\(\dfrac{a\left(z^2+y^2\right)}{b+c}+\dfrac{b\left(x^2+z^2\right)}{a+c}+\dfrac{c\left(x^2+y^2\right)}{a+b}\ge xy+yz+xz\)