Violympic toán 9

ND

Cho a+b+c=a^2+b^2+c^2=1 , a/x=b/y=c/z. Chứng minh xy +yz+xz=0

AH
13 tháng 11 2023 lúc 17:59

Lời giải:

Ta có:

$(a+b+c)^2-(a^2+b^2+c^2)=1-1=0$

$\Leftrightarrow 2(ab+bc+ac)=0$

$\Leftrightarrow ab+bc+ac=0$

Đặt $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t\Rightarrow x=\frac{a}{t}, y=\frac{b}{t}, z=\frac{c}{t}$

Do đó:

$xy+yz+xz=\frac{ab}{t^2}+\frac{bc}{t^2}+\frac{ac}{t^2}$

$=\frac{1}{t^2}(ab+bc+ac)=\frac{1}{t^2}.0=0$

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
LH
Xem chi tiết
QL
Xem chi tiết
LV
Xem chi tiết
TB
Xem chi tiết
HB
Xem chi tiết
NH
Xem chi tiết
IE
Xem chi tiết
NN
Xem chi tiết