Tính giá trị biểu thức :
\(A=2x+2xy.\) Vói \(\left|x\right|=2,5;y=-\frac{3}{4}\)
Tính giá trị của biểu thức
A= 2x + 2xy - y với | x | = 2,5; y = -3/4
ta có : x=2,5 = 5/2 ; y= 3/4
Thay x= 5/2 ; y= 3/4 vào biểu thức 2x + 2xy - y, ta có
2 . 5/2 + 2 . 5/2 . 3/4 - 3/4
= 5 . 15/4 - 3/4
= 75/4 - 3/4
= 18
Tính giá trị biểu thức
\(A=2x+2xy.Với\left|x\right|=2,5;y=-\frac{3}{4}\)
A = 2x + 2xy = 2x.(1 + y)
|x| = 2,5 => x = 2,5 hoặc x = -2,5
+) x = 2,5
=> A = 2 . 2,5 . (1 - 3/4) = 5 . 1/4 = 5/4
+) x = -2,5
=> A = 2 . (-2,5) . (1 - 3/4) = -5 . 1/4 = -5/4
Vậy A = 5/4 hoặc A = -5/4 với |x| = 2,5; y = -3/4.
A= 2x (2,5 ) + 2x2,5 x ( -3/4)
A= 5/4
A = 2x + 2xy = 2x.(1 + y)
|x| = 2,5 => x = 2,5 hoặc x = -2,5
+) x = 2,5
=> A = 2 . 2,5 . (1 - 3/4) = 5 . 1/4 = 5/4
+) x = -2,5
=> A = 2 . (-2,5) . (1 - 3/4) = -5 . 1/4 = -5/4
Vậy A = 5/4 hoặc A = -5/4 với |x| = 2,5; y = -3/4.
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Cho 3x-y=3z và 2x+y=7z. Tính giá trị của biểu thức: \(M=\dfrac{x^2-2xy}{x^2+y^2}\left(x\ne0,y\ne0\right)\)
Ta có: \(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)
\(\Leftrightarrow3x-y+2x+y=10z\)
\(\Leftrightarrow5x=10z\)
hay x=2z
Thay x=2z vào biểu thức 3x-y=3z, ta được:
\(3\cdot2z-y=3z\)
\(\Leftrightarrow6z-y=3z\)
hay y=3z
Thay x=2z và y=3z vào biểu thức \(M=\dfrac{x^2-2xy}{x^2+y^2}\), ta được:
\(M=\dfrac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{13z^2}=\dfrac{-8z^2}{13z^2}=\dfrac{-8}{13}\)
Vậy: \(M=\dfrac{-8}{13}\)
\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)
Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)
\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)
Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
Tính giá trị biểu thức sau khi đã bỏ dấu ngoặc
\(A=\left(3,1-2,5\right)-\left(-2,5+3,1\right)\)
\(B=\left(5,3-2,8\right)-\left(4+5,3\right)\)
A = (3,1 – 2,5) – (-2,5 + 3,1) = 3,1 – 2,5 + 2,5 – 3,1 = 0
B = (5,3 – 2,8) – (4 + 5,3) = 5,3 – 2,8 – 4 – 5,3
A=(3,1-2,5)-(-2,5+3,1)=3,1-2,5+2,5-3,1=0
B=(5,3-2,8)-(4+5,3)=5,3-2,8-4-5,3=-6,8
A = ( 3,1 − 2,5 ) − ( −2,5 + 3,1 )
A = 3, 1 - 2,5 + 2,5 - 3,1
A = 0
B = ( 5,3 − 2,8 ) − ( 4 + 5,3 )
B = 5,3 - 2,8 - 4 - 5,3
B = -6,8
Bài 1: Tính nhanh giá trị biểu thức
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
Tại x = 100
Bài 2:Cho biểu thức
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức đc xác định
b) CMR khi giá trị của biểu thức đc xác định thì nó không phụ thuộc và biến x
thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)
Bài 2 :
a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)
\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)
\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{8}{5}\)
=> giá trị của B ko phụ thuộc vào biến x
bài 1
=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)
=\(\left(2x+1+2x-1\right)^2\)
=\(\left(4x\right)^2\)
=\(16x^2\)
Tại x=100 thay vào biểu thức trên ta có:
16*100^2=1600000
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)=\left[\frac{x+1}{2.\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2.\left(x+1\right)}\right]\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne\pm1\\x\ne-1\end{cases}\Rightarrow x\pm1}\)
Vậy để B xác định => x=+-1
Tính giá trị của biểu thức \(A=\left(x-2\right)^{2019}+\left(y-3\right)^{2020}\) Biết:
\(2x^2+y^2+2xy-8x-6y+10=0\)
Giúp với , làm ơn ! -_-
\(2x^2+y^2+2xy-8x-6y+10=0\)
\(\Rightarrow2.\left(2x^2+y^2+2xy-8x-6y+10\right)=0\)
\(\Rightarrow4x^2+2y^2+4xy-16x-12y+20=0\)
\(\Rightarrow\left(4x^2+y^2+16+4xy-8y-16x\right)+\left(y^2-4y+4\right)=0\)
\(\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2=0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left(2x+y-4\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2\ge0\forall x;y\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+y=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}2x+2=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Chúc bạn học tốt.
Tính giá trị biểu thức
\(A=\left(3,1-2,5\right)-\left(-2,5+3,1\right)\)
A= ( 3,1 -2,5 ) - ( -2,5 + 3,1 )
=3,1 -2,5 + 2,5 - 3,1
=0
Ta có
A = 0,6 - 0,6
A = 0
đ/s là : 0 nha
\(A=0.6-0.6=0\)
hok tot