3x-x+10=16
tim x
phân tích đa thức thành nhân tử
b)3x(x-2y)+4y(2y-x)+2(3x-4y)
f)1/3x(x-10-2/3x^2(x-10+3/2(x-1)x^3
h)8x(x-3y)+3y-x-8x+1
lẹ nha mn
Mày ra câu hỏi từ từ người ta trả lới cho chứ cứ hối người ta 😡
b) \(3x\left(x-2y\right)+4y\left(2y-x\right)+2\left(3-4y\right)\)
\(=3x\left(x-2y\right)-4y\left(x-2y\right)+2\left(3-4y\right)\)
\(=\left(x-2y\right)\left(3x-4y\right)+2\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left[\left(x-2y\right)+2\right]\)
Tìm x :
a. 10 x X - 1 - 3 - 5 - 7 - .... - 19 = 2 + 4 + 6 + .... + 20 .
b. 3x / 2 + 3x / 6 + 3x / 12 + 3x / 20 + 3x / 30 = 10
a ) 10 x X - 1 - 3 - 5 - 7 - ... - 19 = 2 + 4 + 6 + ... + 20
10 x X - 1 - 3 - 5 - 7 - ... - 19 = 110
10 x X - ( 1 + 3 + 5 + 7 + ... + 19 ) = 110
10 x X - 100 = 110
10 x X = 110 + 100
10 x X = 210
X = 210 : 10
X = 21
a 10 x X-1-3-5-7-....-19 = 2+4+6+....+20
10xX-1-3-5-7-....-19=110
10xX=110+1+3+5+7+....+19
10xX=210
X=210:10
X=21
b là 4
|x +10| - (5 - 3x) = (4x - 10) - (x - 5)
|3x + 21| - ( 10 - 5x ) = 5x - |-20|
a) | x + 10 | - ( 5 - 3x ) = ( 4x - 10 ) - ( x - 5 )
=> | x + 10 | = ( 5 - 3x ) + ( 4x - 10 ) - ( x - 5 )
=> | x + 10 | = 5 - 3x + 4x - 10 - x + 5
=> | x +10 | = 0
=> x + 10 = 0
=> x = -10
Vậy...
b) Làm tương tự
Kết quả : | 3x + 21 | = -10 ( vô lí) ( vì |3x+21| >= 0 mà -10<0)
Vậy không tìm được x thỏa mãn bài toán
I: thu gọn
M= (-x-8)-(-3x+10)-(x-10)
N=-(x-100)+(-3x+10)-(-x-100)
Q=100-(-4x+1)-(99+x)-(x-1)
Help me
\(M=\left(-x-8\right)-\left(-3x+10\right)-\left(x-10\right)\\ =-x-8+3x-10-x+10\\ =\left(-x+3x-x\right)+\left(-8-10+10\right)\\ =x-8\)
\(N=-\left(x-100\right)+\left(-3x+10\right)-\left(-x-100\right)\\ =-x+100+-3x+10+x+100\\ =\left(-x+-3x+x\right)+\left(100+10+100\right)\\ =-3x+210\\ =3\left(-x+70\right)\)
\(Q=100-\left(-4x+1\right)-\left(99+x\right)-\left(x-1\right)\\ =100+4x-1-99-x-x+1\\ =\left(4x-x-x\right)+\left(100-1-99+1\right)\\ =2x+1\)
gpt \(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)
\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)
Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c)3x^2-7x-10=0
d)2x(x-10)-x+10=0
e)3x^3+7x^2+17x+5=0
f)(2x-1)^2-(x-3)^2=0
g)x^3-5x^2+8x=4
c, \(3x^2-7x+10=0\)
\(\Leftrightarrow3x^2+3x-10x+10=0\)
\(\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{3}\end{matrix}\right.\)
d, \(2x\left(x-10\right)-x+10=0\)
\(\Leftrightarrow2x\left(x-10\right)-\left(x-10\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{1}{2}\end{matrix}\right.\)
TÍnh gt biểu thức
Q = (3x – 1)(9 x 2 – 3x + 1) – (1 – 3x)(1 + 3x + 9 x 2 ) tại x = 10
`Q=(3x-1)(9x^2-3x+1)-(1-3x)(1+3x+9x^2)`
`=(3x-1)(9x^2-3x+1)+(3x-1)(9x^2+3x+1)`
`=(3x-1)(9x^2-3x+1+9x^2+3x+1)`
`=(3x-1)(18x^2+2)`
Thay `x=10` vào biểu thức: `Q=(3.10-1)(18 .10^2+2)=52258`
a) x\(^2\)-3x+7=1+2x
b) x\(^2\)-3x-10=0
c) x\(^2\)-3x+4=2(x-1)
d) (x+1)(x-2)(x-5)=0
e) 2x\(^2\)+3x+1=0
f) 4x\(^2\)-3x=2x-1
a) Ta có: \(x^2-3x+7=1+2x\)
\(\Leftrightarrow x^2-3x+7-1-2x=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy: S={3;2}
b) Ta có: \(x^2-3x-10=0\)
\(\Leftrightarrow x^2-5x+2x-10=0\)
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy: S={5;-2}
c) Ta có: \(x^2-3x+4=2\left(x-1\right)\)
\(\Leftrightarrow x^2-3x+4=2x-2\)
\(\Leftrightarrow x^2-3x+4-2x+2=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy: S={3;2}
d) Ta có: \(\left(x+1\right)\left(x-2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=5\end{matrix}\right.\)
Vậy: S={-1;2;5}
e) Ta có: \(2x^2+3x+1=0\)
\(\Leftrightarrow2x^2+2x+x+1=0\)
\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{-1}{2}\right\}\)
f) Ta có: \(4x^2-3x=2x-1\)
\(\Leftrightarrow4x^2-3x-2x+1=0\)
\(\Leftrightarrow4x^2-5x+1=0\)
\(\Leftrightarrow4x^2-4x-x+1=0\)
\(\Leftrightarrow4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{1;\dfrac{1}{4}\right\}\)
Tìm x biết:
1. (x-2)^2-(x-3)(x+3)=6
2. 4(x-3)^2-(2x-1)(2x+1)=10
3. (x-4)^2-(x-2)(x+2)=6
4.9(x+1)^2-(3x-2)(3x+2)=10
5. 3x +2(5-x)=0
6.x(2x-1)(x+5)-(2x^2+1)(x+4,5)=3,5
7, 3x^2-3x(x-2)=36
8. (3x^2-x+1)(x-1) +x^2(4-3x)=5/2
Tìm x, biết:
a)x(2x-3)-(2x-1)(x+5)=17
b)(2x+5)^2+(3x-10)^2+2.(2x+5)(3x-10)=0
a: Ta có: \(x\left(2x-3\right)-\left(2x-1\right)\left(x+5\right)=17\)
\(\Leftrightarrow2x^2-3x-2x^2-10x+x+5=17\)
\(\Leftrightarrow-12x=12\)
hay x=-1