Những câu hỏi liên quan
HC
Xem chi tiết
NL
2 tháng 8 2021 lúc 17:14

a. Áp dụng định lý Pitago:

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)

b.

Áp dụng hệ thức lượng:

\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)

\(IC=BC-IB=12,8\left(cm\right)\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 20:59

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)

b)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=IB\cdot BC\\AC^2=IC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
HC
Xem chi tiết
NT
2 tháng 8 2021 lúc 19:49

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)

hay AC=16(cm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BI\cdot BC\\AC^2=CI\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=\dfrac{144}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
HC
Xem chi tiết
LL
Xem chi tiết
NM
2 tháng 10 2021 lúc 21:05

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

Bình luận (0)
NH
2 tháng 10 2021 lúc 21:08

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

Bình luận (0)
NT
2 tháng 10 2021 lúc 21:09

Bài 2:

a: Xét ΔABC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Bình luận (0)
H24
Xem chi tiết
TG
17 tháng 2 2021 lúc 10:55

Bài 1:

Tam giác ABC có AO là phân giác

\(\Rightarrow\dfrac{OB}{AB}=\dfrac{OC}{AC}\)

\(\Rightarrow\dfrac{OB}{15}=\dfrac{OC}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{OB}{15}=\dfrac{OC}{25}=\dfrac{OB+OC}{15+25}=\dfrac{BC}{40}=\dfrac{30}{40}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}OB=\dfrac{3}{4}.15=11,25\left(cm\right)\\OC=\dfrac{3}{4}.25=18,75\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
NT
17 tháng 2 2021 lúc 17:18

Bài 1:

Xét ΔABC có 

AO là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{OB}{AB}=\dfrac{OC}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{OB}{15}=\dfrac{OC}{25}\)

mà OB+OC=BC(O nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{OB}{15}=\dfrac{OC}{25}=\dfrac{OB+OC}{15+25}=\dfrac{BC}{40}=\dfrac{30}{40}=\dfrac{3}{4}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{OB}{15}=\dfrac{3}{4}\\\dfrac{OC}{25}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}OB=\dfrac{45}{4}cm\\OC=\dfrac{75}{4}cm\end{matrix}\right.\)

Vậy: \(OB=\dfrac{45}{4}cm;OC=\dfrac{75}{4}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Xét ΔABC có 

AI là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{IB}{AB}=\dfrac{IC}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{IB}{5}=\dfrac{IC}{12}\)

mà IB+IC=BC(I nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{IB}{5}=\dfrac{IC}{12}=\dfrac{IB+IC}{5+12}=\dfrac{BC}{17}=\dfrac{13}{17}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{IB}{5}=\dfrac{13}{17}\\\dfrac{IC}{12}=\dfrac{13}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{65}{17}cm\\IC=\dfrac{156}{17}cm\end{matrix}\right.\)

Vậy: \(IB=\dfrac{65}{17}cm;IC=\dfrac{156}{17}cm\)

Bình luận (0)
TG
17 tháng 2 2021 lúc 11:00

Bài 2: 

Tam giác ABC vuông tại A. Áp dụng Pitago

BC2 = AB2 + AC2 = 25 + 144 = 169 (cm)

=> BC = 13 (cm)

Tam giác ABC có AI là phân giác

\(\Rightarrow\dfrac{IB}{AB}=\dfrac{IC}{AC}\)

\(\Rightarrow\dfrac{IB}{5}=\dfrac{IC}{12}\)Áp dụng tính chaatd dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{IB}{5}=\dfrac{IC}{12}=\dfrac{IB+IC}{5+12}=\dfrac{BC}{17}=\dfrac{13}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}IB=\dfrac{13}{17}.5\approx3,8\left(cm\right)\\IC=\dfrac{13}{17}.12\approx9,2\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
MN
Xem chi tiết
HT
6 tháng 7 2021 lúc 12:00

a) Xét tam giác AHE vuông tại H: 

Ta có: AH2 = AE2 + EH2 (Định lý Pytago).

Thay số: AH2 = 162 + 122

<=> AH2 = 256 + 144  <=> AH2 = 400 <=> AH = 20 (cm)

Xét tam giác AHB vuông tại H, EH là đường cao:

Ta có: AE.EB = EH2 (Hệ thức lượng)

Thay số: 16.EB = 122 

<=> 16.EB = 144

<=> EB = 9 (cm)

Xét tam giác AHE vuông tại E:

tan BAH = \(\dfrac{EH}{AE}\) (Tỉ số lượng giác)

Thay số: tan BAH = \(\dfrac{12}{16}=\dfrac{3}{4}\)

tan BAH = 36o 52'

 

 

 
Bình luận (0)
MN
Xem chi tiết
NT
6 tháng 7 2021 lúc 11:42

a) Áp dụng định lí Pytago vào ΔAEH vuông tại E, ta được:

\(AH^2=AE^2+EH^2\)

\(\Leftrightarrow AH^2=16^2+12^2=400\)

hay AH=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(HE^2=EA\cdot EB\)

\(\Leftrightarrow EB=\dfrac{HE^2}{EA}=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)

Xét ΔEAH vuông tại H có 

\(\tan\widehat{EAH}=\dfrac{EH}{EA}\)

\(\Leftrightarrow\tan\widehat{BAH}=\dfrac{12}{16}=\dfrac{3}{4}\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

c) Ta có: \(AE\cdot AB=AF\cdot AC\)(cmt)

nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Bình luận (0)
HC
Xem chi tiết
H24
16 tháng 6 2021 lúc 12:44

undefined

Bình luận (0)
H24
Xem chi tiết
AH
25 tháng 2 2021 lúc 10:48

Lời giải:

a) Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=20$ (cm)

Theo tính chất đường phân giác:

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=BC.\frac{3}{7}=20.\frac{3}{7}=\frac{60}{7}$ (cm)

$CD=BC-BD=\frac{80}{7}$ (cm)

b) 

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm)

$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)

$AD=\sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)

 

Bình luận (1)
AH
25 tháng 2 2021 lúc 10:49

Hình vẽ:

undefined

Bình luận (0)