Cho ΔABC vuông ở A , AB=12cm , BC =20 cm
a) Tính AC
b) Vẽ đường cao AI . Tính IB và IC
Cho ΔABC vuông ở A , AB = 12 cm , BC=20 cm
a) tính AC
b)Vẽ đường cao AI . Tính IB , IC
a. Áp dụng định lý Pitago:
\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
b.
Áp dụng hệ thức lượng:
\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)
\(IC=BC-IB=12,8\left(cm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=IB\cdot BC\\AC^2=IC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)
Cho ΔABC vuông ở A , AB = 12 cm , BC=20 cm
a) tính AC
b)Vẽ đường cao AI . Tính IB , IC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BI\cdot BC\\AC^2=CI\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=\dfrac{144}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A , đường cao AH
a) Chứng minh ΔABC ∼ ΔABH
b)Vẽ tia phân giác AI . Tính IB và IC biết BC =10cm và AB\AC=2\3
* Cho ΔABC có BC=12cm, góc B=\(60^0\), góc C=\(40^0\)
a. Tính đường cao CH và cạnh AC
b. Tính diện tích ΔABC (làm tròn đến chữ số thập phân thứ 2)
* Cho ΔABC vuông tại A có góc B= \(30^0\), AB=6cm
a. Giải tam giác vuông ABC
b. Vẽ đường cao AH, trung tuyến AM của ΔABC. Tính diện tích ΔAHM
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Bài 2:
a: Xét ΔABC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Bài 1 Cho △ABC có AO là đường phân giác. Biết AB = 15cm ; AC = 25cm ; BC= 30cm. Tính OB và OC.Bài 2 Cho △ABC có vuông tại A có AI là đường phân giác. Biết AB = 5cm ; AC= 12cm. Tính IB và IC.
Bài 1:
Tam giác ABC có AO là phân giác
\(\Rightarrow\dfrac{OB}{AB}=\dfrac{OC}{AC}\)
\(\Rightarrow\dfrac{OB}{15}=\dfrac{OC}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{OB}{15}=\dfrac{OC}{25}=\dfrac{OB+OC}{15+25}=\dfrac{BC}{40}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}OB=\dfrac{3}{4}.15=11,25\left(cm\right)\\OC=\dfrac{3}{4}.25=18,75\left(cm\right)\end{matrix}\right.\)
Bài 1:
Xét ΔABC có
AO là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{OB}{AB}=\dfrac{OC}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{OB}{15}=\dfrac{OC}{25}\)
mà OB+OC=BC(O nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{OB}{15}=\dfrac{OC}{25}=\dfrac{OB+OC}{15+25}=\dfrac{BC}{40}=\dfrac{30}{40}=\dfrac{3}{4}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{OB}{15}=\dfrac{3}{4}\\\dfrac{OC}{25}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}OB=\dfrac{45}{4}cm\\OC=\dfrac{75}{4}cm\end{matrix}\right.\)
Vậy: \(OB=\dfrac{45}{4}cm;OC=\dfrac{75}{4}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13cm\)
Xét ΔABC có
AI là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{IB}{AB}=\dfrac{IC}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{IB}{5}=\dfrac{IC}{12}\)
mà IB+IC=BC(I nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IB}{5}=\dfrac{IC}{12}=\dfrac{IB+IC}{5+12}=\dfrac{BC}{17}=\dfrac{13}{17}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{IB}{5}=\dfrac{13}{17}\\\dfrac{IC}{12}=\dfrac{13}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{65}{17}cm\\IC=\dfrac{156}{17}cm\end{matrix}\right.\)
Vậy: \(IB=\dfrac{65}{17}cm;IC=\dfrac{156}{17}cm\)
Bài 2:
Tam giác ABC vuông tại A. Áp dụng Pitago
BC2 = AB2 + AC2 = 25 + 144 = 169 (cm)
=> BC = 13 (cm)
Tam giác ABC có AI là phân giác
\(\Rightarrow\dfrac{IB}{AB}=\dfrac{IC}{AC}\)
\(\Rightarrow\dfrac{IB}{5}=\dfrac{IC}{12}\)Áp dụng tính chaatd dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{IB}{5}=\dfrac{IC}{12}=\dfrac{IB+IC}{5+12}=\dfrac{BC}{17}=\dfrac{13}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}IB=\dfrac{13}{17}.5\approx3,8\left(cm\right)\\IC=\dfrac{13}{17}.12\approx9,2\left(cm\right)\end{matrix}\right.\)
Bài 1: Cho ΔABC nhọn (AB<AC) đường cao AH. Vẽ HE ⊥ AB ở E, HF ⊥ AC ở F.
a) Cho AE= 16cm, EH=12cm. Tính AH,EB và tan BAH.
b) Chứng minh AE.AB=AF.AC
c) Chứng minh ΔAEF đồng dạng ΔACB và tính chính xác diện tích của ΔAEF biết ACB=\(45^o\).
Bài 2: Cho ΔABC vuông tại A
a) Chứng minh \(\dfrac{BC}{\sin A}=\dfrac{AC}{\sin B}=\dfrac{AB}{\sin C}\)
b) Chứng minh \(BC^2=AB^2+AC^2-2AB.AC.cosA.\)
Bài 3: Cho ΔABC vuông tại A có AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh: AEHF là hình chữ nhật và AE.AB=AF.AC
b) Chứng minh: \(AB^2-AC^2=BH^2-CH^2\)
c) Chứng minh: \(\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)
d) Chứng minh: \(AH^3=BC.BE.CF\)
e)Chứng minh: BH.CH= AE.BE + AF.CF
a) Xét tam giác AHE vuông tại H:
Ta có: AH2 = AE2 + EH2 (Định lý Pytago).
Thay số: AH2 = 162 + 122
<=> AH2 = 256 + 144 <=> AH2 = 400 <=> AH = 20 (cm)
Xét tam giác AHB vuông tại H, EH là đường cao:
Ta có: AE.EB = EH2 (Hệ thức lượng)
Thay số: 16.EB = 122
<=> 16.EB = 144
<=> EB = 9 (cm)
Xét tam giác AHE vuông tại E:
tan BAH = \(\dfrac{EH}{AE}\) (Tỉ số lượng giác)
Thay số: tan BAH = \(\dfrac{12}{16}=\dfrac{3}{4}\)
tan BAH = 36o 52'
Bài 1: Cho ΔABC nhọn (AB<AC) đường cao AH. Vẽ HE ⊥ AB ở E, HF ⊥ AC ở F.
a) Cho AE= 16cm, EH=12cm. Tính AH,EB và tan BAH.
b) Chứng minh AE.AB=AF.AC
c) Chứng minh ΔAEF đồng dạng ΔACB và tính chính xác diện tích của ΔAEF biết ACB=\(45^o\)
a) Áp dụng định lí Pytago vào ΔAEH vuông tại E, ta được:
\(AH^2=AE^2+EH^2\)
\(\Leftrightarrow AH^2=16^2+12^2=400\)
hay AH=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(HE^2=EA\cdot EB\)
\(\Leftrightarrow EB=\dfrac{HE^2}{EA}=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Xét ΔEAH vuông tại H có
\(\tan\widehat{EAH}=\dfrac{EH}{EA}\)
\(\Leftrightarrow\tan\widehat{BAH}=\dfrac{12}{16}=\dfrac{3}{4}\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
c) Ta có: \(AE\cdot AB=AF\cdot AC\)(cmt)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
Cho tam giác ABC vuông tại A , vẽ đường cao AH . Chứng minh
a)Tam giác ABC đồng dạng với tam giác ABH
b) Vẽ tia phân giác AI . Tính IB vầ IC biết BC =10cm và \(\dfrac{AB}{AC}\)=\(\dfrac{2}{3}\)
Cho ΔABC vuông tại A, AB=12cm, AC=16cm; đường phân giác góc A cắt BC tại D.
a) Tính BD,DC.
b) Vẽ đường cao AH, tính AH,HD,AD
Lời giải:
a) Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=20$ (cm)
Theo tính chất đường phân giác:
$\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$
$\Rightarrow \frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=BC.\frac{3}{7}=20.\frac{3}{7}=\frac{60}{7}$ (cm)
$CD=BC-BD=\frac{80}{7}$ (cm)
b)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm)
$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)
$AD=\sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)