ĐỀ BÀI : TÍNH CÁC CẠNH CÒN LẠI
Bài 1: Cho AABC = AEFG. Viết các cạnh bằng nhau và các góc bằng nhau. Hãy viết đẳng thức dưới một vài dạng khác. Giả sử A= 55° F=75° ; AB = 4cm; BC = Scm; EG = 7cm. Tính các gốc còn lại và chu vi của hai tam giác.
Bài 2: Cho biết A ABC = AMNP = ARST. a) Nếu A ABC vuông tại A thì các tam giác còn lại có vuông không? Vì sao? b) Cho biết thêm A =90°,S== 60°, Tính các góc còn lại của ba tam giác. c) Biết AB = 7cm, NP = 5cm; RT = 6cm. Tính các cạnh còn lại của ba tam giác và tính tổng chu vi của ba tam giác.
Bài 3: Cho biết AM là đường trung trực của BC (M e BC; A BC). Chứng tỏ rằng ABM=ACM; MAB=MAC, AB= AC.
Bài 4: Cho AABC có A = 90". Trên cạnh BC lấy điểm E sao cho AB = BE. Tia phân giác của B cắt cạnh AC ở D. Chứng minh: AABD=AEBD ) Chứng minh: B là d Chứng minh AB// CD
Đề bài: Cho tam giác ABC vuông tại A, đường cao AH. Tính độ dài các cạnh còn lại của tam giác ABC trong mỗi trường hợp sau:
a. AB = a, AH = \(\dfrac{a\sqrt{3}}{2}\)
b. BC = 2a, HB = \(\dfrac{1}{4}BC\)
c. AB = a, CH = \(\dfrac{3}{2}a\)
d. CA = \(a\sqrt{3}\), AH = \(\dfrac{a\sqrt{3}}{2}\)
Giúp mình với ạ, mình cảm ơn trước.
a.
Áp dụng hệ thức lượt trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$
$\Rightarrow AC=\sqrt{3}a$
$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$
b.
$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$
$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC; AC^2=CH.BC$
$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$
Áp dụng định lý Pitago:
$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$
$\Rightarrow AC=\sqrt{3}a$
$\Rightarrow AB=a$
c.
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC$
$\Leftrightarrow AB^2=BH(BH+CH)$
$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$
$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$
$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$
$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$
$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$
d. Tương tự phần a.
Bài 1. Cho tam giác ABC và tam giác MNP đồng dạng với nhau theo tỉ số 13 , 𝐴𝐵=3𝑐𝑚;𝑁𝑃=15. Tính các cạnh còn lại của hai tam giác biết chu vi tam giác ABC là 14cm.
Bài 2. Cho tam giác ABC có AB=3cm; AC=7cm và BC=5cm. Biết tam giác MPN đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5 cm. Tính các cạnh còn lại của tam giác MPN.
Bài 3. Cho tam giác ABC có AB=5cm; BC=8cm; AC=7cm. Lấy điểm D nằm trên cạnh BC sao cho BD=2cm. Qua D kẻ đường thẳng song song với AB và AC lần lượt cắt AC và AB tại F và E.
a) Chứng minh BDE đồng dạng với DCF
b) Tính chu vi tứ giác AEDF.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Đề bài: Trên tia Ax lấy các điểm B,C sao cho AB=4cm , AC=8cm.
a) Trong 3 điểm A,B,C điểm nào nằm giữa 2 điểm còn lại ? Vì sao ?
b) Chứng tỏ B là trung điểm của đoạn thẳng AC
c) Gọi D là trung điểm đoạn thẳng AB . Tính độ dài đoạn thẳng DC.
Giúp mk nha
Bài 1: Cho tam giác ABC có đỉnh B(-6;4), phương trình cạnh AC: x-y-2=0, đường cao AH: 7x-y+4=0. Tìm ptr hai cạnh còn lại
Bài 2: Cho tam giác ABC. Gọi E, F, K là trung điểm các cạnh AB, AC, BC. Cho biết ptr EF: x-y+3=0, FK: 3x+2y-6=0. Viết ptr ba cạnh của tam giác.
help me
1.
A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)
Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)
Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)
Tính cạnh còn lại :
AC/3 = BC/4 biết AC + BC = 14
Tính cạnh AB
\(\dfrac{AC}{3}=\dfrac{BC}{4}=\dfrac{AC+BC}{3+4}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}AC=3.2=6\\BC=4.2=8\end{matrix}\right.\)
Theo định lý Pitago cho Δ vuông ABC:
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=64-36=28\)
\(\Rightarrow AB=\sqrt[]{28}=2\sqrt[]{7}\)
Bài toán1: Qua mỗi đỉnh của tam giác kẻ đường thẳng song song với cạnh đối diện của nó:
a) Chứng minh rằng: Mỗi đường thẳng cắt 2 đường thẳng còn lại.
b)Chúng minh rằng:Qua giao điểm là 3 đỉnh của 1 tam giác.
Bài toán 2:Cho tam giá ABC có AB bé thua AC.Hãy nói cách xác định M thuộc AC sao cho AM+MB=AC.
Bài toán 3: Cho biết 2 đường trung trực của 2 đoạn thẳng AC và CD cắt nhau tại O.Trong các mệnh đề sau , mênh đề nào đúng mệnh đề nào sai:
a) 2 đường thẳng AB và CD song song với nhau.
b) 2 đường thẳng AB và CD cắt nhau.
c) Điểm O cắt đường thẳng cách đều 4 điểm A,B,C,D.
Các bạn giúp mik giải 3 bài toán hình này nhé! Sáng mai mik phải nộp rồi!
Tính các góc và các cạnh còn lại của tam giác ABC vuông tại A , biết :
a. AC = 10cm , góc C = 30 độ
b. BC = 20cm , góc B = 40 độ
c. AB = 21cm , AC = 18cm
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
Cho ΔABC vuông tại A đường cao AH tính các đoạn còn lại nếu biết:
a, BH=9;AC=16
b, AH=48;BC=100
c, AH=6;BC=13
d, AC=15;BH=7
e, AB=12;CH=12.8
f, AB=10;\(\frac{AC}{AB}=\frac{4}{3}\)
f: AC/AB=4/3
nên AC=4/3AB=40/3(cm)
=>BC=50/3(cm)
=>AH=8(cm)
=>BH=6(cm)
=>CH=32/3(cm)
b: BH=36(cm)
CH=64(cm)
AB=60(cm)
AC=80(cm)