Tìm giá trị nhỏ nhất : A= \(\left|x-1\right|+\left|2x+1\right|\)
Tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(1+tg^2x\right)\left(1-sin^2x\right)+\left(1+cotg^2x\right)\left(1-cos^2x\right)-sinx.cosx\) \(\left(0^o< x< 90^o\right)\)
tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2-1+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
ai thấy mình làm đúng thì k cho mình nha!
A=\(\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
ĐẶT \(2x^2-3x=t\)
\(\Leftrightarrow\left(t+1\right)\left(t-1\right)+2017\)
\(\Leftrightarrow t^2-1+2017\)
\(\Leftrightarrow t^2+2016\ge2016\left(do.t^2\ge0\right)\)
DẤU ''='' XẢY RA KHI VÀ CHỈ KHI \(t^2=0\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=0\end{cases}}\)
VẬY GTNN CỦA A LÀ 2016 TẠI X=0 HOẶC X=3/2
Tìm x để biểu thức:
a) A= 0,6 + \(\left|\dfrac{1}{2}-x\right|\) đạt giá trị nhỏ nhất
b) B= \(\dfrac{2}{3}\) - \(\left|2x+\dfrac{2}{3}\right|\) đạt giá trị lớn nhất
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Cho x-y=2, tìm giá trị nhỏ nhất của biểu thức C= \(\left|2x+1\right|+\left|2y+1\right|\)
\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)
\(C_{min}=4\)
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất
\(A=\dfrac{2022}{\left|x\right|+2003}\)
\(B=\left(\left|x\right|+1\right)^{10}+2009\)
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0
tìm giá trị nhỏ nhất
e) E= \(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G= \(\left|x-1\right|+\left|x-2\right|\)
h) H= \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K= \(\left|x-1\right|+\left|2x-1\right|\)
lm nhanh giúp mk nhé mk đang cần gấp lắm
1
e) E >= 2021
dấu = xảy ra khi x=1/2
g) G = |x-1|+ |2-x| >= |x-1+2-x|=1
Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2
h) H = |x-1|+|x-2| + |x-3|
Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2
|x-2| >=0
=> H>=2
Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0
<=> x=2
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Ta có : |2x-2| + |2x-1| = |2x-2| + |1-2x| >= |2x-2+1-2x|=1
|2x-1| >=0
Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0
<=> x=1/2
e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)
Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)
Vậy...
b)G=|x-1|+ |2-x|\(\)
áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)
\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)
\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)
Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)
Vậy...
h)H= |x-1|+|x-2| + |x-3|
Ta có |x-1| + |x-3|
=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)
=>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)
<=>|x-1| + |3-x|\(\ge2\forall x\) (1)
Mà |x-2|\(\ge0\forall x\) (2)
Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)
Dấu "=" xảy ra khi x-2=0
<=>x=2
Vậy...
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Mà : |2x-2| + |2x-1|
=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)
Lại có |2x-1| \(\ge\)0 \(\forall x\)
Dấu "=" xảy ra 2x-1=0
<=>x=\(\dfrac{1}{2}\)
Vậy....
Tìm giá trị nhỏ nhất
e) E=\(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G=\(\left|x-1\right|+\left|x-2\right|\)
h) H=\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K=\(\left|x-1\right|+\left|2x-1\right|\)
Lm nhanh giúp mk nhé!Mk đang cần gấp lắm
tìm giá trị nhỏ nhất
e)E= \(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G=\(\left|x-1\right|+\left|x-2\right|\)
h) H=\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K=\(\left|x-1\right|+\left|2x-1\right|\)
lm nhanh giúp mk nhé! mk đang cần gấp lắm
e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)