Phân tích đa thức thành nhân tử:
(x2 + x).(x2 + x + 4) - 60
Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:
x2 + 4x – 2xy – 4y + y2 = (x2 - 2xy + y2) + (4x – 4y)
= (x - y)2 + 4(x – y)
= (x – y)(x – y + 4).
Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
Phân tích đa thức thành nhân tử:
(x2+x+1)(x2+x+5)-21
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)+5-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-16\)
\(=\left(x^2+x+8\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+8\right)\left(x+2\right)\left(x-1\right)\)
Phân tích đa thức sau thành nhân tử: x2 – 4 + (x – 2)2
Cách 1: x2 – 4 + (x – 2)2
(Xuất hiện hằng đẳng thức (3))
= (x2– 22) + (x – 2)2
= (x – 2)(x + 2) + (x – 2)2
(Có nhân tử chung x – 2)
= (x – 2)[(x + 2) + (x – 2)]
= (x – 2)(x + 2 + x – 2)
= (x – 2)(2x)
= 2x(x – 2)
Cách 2: x2 – 4 + (x – 2)2
(Khai triển hằng đẳng thức (2))
= x2 – 4 + (x2 – 2.x.2 + 22)
= x2 – 4 + x2 – 4x + 4
= 2x2 – 4x
(Có nhân tử chung là 2x)
= 2x(x – 2)
phân tích đa thức thành nhân tử
a x2 + 4x -y2 + 4
b 2x2 -18
c x3 -x2 -x + 1
d x2 -7xy + 10y2
a, \(x^2\) + 4\(x\) - y2 + 4
= (\(x^2\) + 4\(x\) + 4) - y2
= (\(x\) + 2)2 - y2
= (\(x\) + 2 - y)(\(x\) + 2 + y)
b, 2\(x^2\) - 18
= 2.(\(x^2\) -9)
= 2.(\(x\) -3).(\(x\) + 3)
c, \(x^3\) - \(x^2\) - \(x\) + 1
= (\(x^3\) + 1) - (\(x^2\) + \(x\))
= (\(x\) + 1)(\(x\)2 - \(x\) + 1) - \(x\).(\(x\) + 1)
=(\(x\) + 1).(\(x^2\) - \(x\) + 1 - \(x\))
= (\(x\) + 1).(\(x\) - 1)2
Phân tích đa thức thành nhân tử:
a) 2 x 3 - x 2 - 8x + 4; b) 4 x 2 - 16 x 2 y 2 + y 2 + 4xy;
c) x 3 - 16x - 15x(x - 4); d) x ( x - y ) 2 + y ( x - y ) 2 - xy + x 2 .
phân tích đa thức (x2- x+ 1)2 - 5x( x2 -x +1)2 + 4x2 thành nhân tử
-Đặt \(t=\left(x^2-x+1\right)\)
\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-4xt-xt+4x^2\)
\(=t\left(t-4x\right)-x\left(t-4x\right)\)
\(=\left(t-4x\right)\left(t-x\right)\)
\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)
\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 +4xy + y 2 ; b) ( 2 x + 1 ) 2 - ( x - 1 ) 2 ;
c) 9 - 6x + x 2 - y 2 ; d) -(x + 2) + 3( x 2 -4).
a) Áp dụng HĐT 1 thu được ( 2 x + y ) 2 .
b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được
[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).
c) Ta có: 9 - 6x + x 2 - y 2 = ( 3 - x ) 2 - y 2 = (3 - x - y)(3 -x + y).
d) Ta có: -(x + 2) + 3( x 2 - 4) = -{x + 2) + 3(x + 2)(x - 2)
= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).
Câu 6 .Kết quả phân tích đa thức x 3 – 4x thành nhân tử là:
A. x(x2 + 4)
B. x(x – 2)(x + 2)
C. x(x2 4)
D. x(x – 2)
1:Phân tích đa thức 5x+ 10 thành nhân tu
2: Giá trị của biểu thức x2 + 4x + 4 tại x= 8
3: Phân tích đa thức x2 - 6x + 9 thành nhân tử
4:Một mảnh đất hình chữ nhật có chiều dài là ( x + 5 ) (m) và có chiều rộng là ( x - 5 ) (m) . Hỏi chiều dài của mảnh đất là bao nhiêu biết mảnh đất có diện tích là 24 m2 .
Bài 1:
$5x+10=5(x+2)$
Bài 2:
Tại $x=8$ thì $x^2+4x+4=(x+2)^2=(8+2)^2=10^2=100$
Bài 3:
$x^2-6x+9=x^2-2.3.x+3^2=(x-3)^2$
Bài 4:
Diện tích mảnh đất là:
$(x+5)(x-5)=24$
$\Leftrightarrow x^2-25=24$
$\Leftrightarrow x^2=49$
$\Rightarrow x=7$ (do $x>5$)
Chiều dài mảnh đất là: $x+5=7+5=12$ (m)
Kết quả phân tích đa thức x2 + 2xy + y2 – 9x – 9y thành nhân tử là :
A.( x + y + 3) ( x + y – 3) (x + y )
B.( x + y – 9) (x + y )
C. ( x + y – 3) (x + y )
D. ( x – y – 9) (x – y )
Phân tích đa thức sau thành nhân tử : x2 -x-y2 -y, ta được kết quả là: A. (x+y)(x-y-1) B. (x-y)(x+y+1) C.(x+y)(x+y-1) D.(x-y)(x+y-1)
Phân tích đa thức sau thành nhân tử : x2 -4x-y2 +4 ta được kết quả là:
A .(x+2-y)(x+2+y)
B. (x-y+2)(x+y-2)
C. (x-2-y)(x-2+y)
D.(x-y-2)(x-y+2)
Đa thức 25 – a2 + 2ab + b2 + được phân tích thành:
A. (5 + a – b)(5 – a – b)
B. (5 + a + b)(5 – a – b)
C. (5 + a + b)(5 – a + b)
D. (5 + a – b)(5 – a + b)