Tìm a biết : \(\frac{1+2b}{18}=\frac{1+4b}{24}=\frac{1+6b}{6a}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm a,b,c biết: \(\frac{1+2b}{18}=\frac{1+4b}{24}=\frac{1+6b}{6a}\)
Tìm a,b biết
\(\frac{1+2b}{18}\)= \(\frac{1+4b}{24}\)=\(\frac{1+6b}{6a}\)
Tìm x , biết: \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Tìm x, y, z biết: \(\frac{1+4y}{18}=\frac{1+5y}{24}=\frac{1+6y}{6x}\)
\(\frac{1+4y}{18}=\frac{1+5y}{24}\Rightarrow24+96y=18+90y\)
\(\Rightarrow6+6y=0\Leftrightarrow6\left(1+y\right)=0\)Vậy y = -1
Thay y = -1 ta có :
\(\frac{1-5}{24}=\frac{1-6}{6x}\Leftrightarrow\frac{-5}{30}=-\frac{5}{6x}\left(\frac{-4}{24}=-\frac{5}{30}=\frac{1-5}{24}\right)\)
Vậy 6x = 30 hay x = 5
Tìm P biết:
\(\frac{a^2-2ab}{a^2b}\). P = \(\frac{a^2b-4b^3}{3ab^2}\)
\(\frac{a^2-2ab}{a^2b}.P=\frac{a^2b-4b^3}{3ab^2}\)
\(P=\frac{a^2b-4b^3}{3ab^2}:\frac{a^2-2ab}{a^2b}\)
\(P=\frac{a^2b-4b^3}{3ab^2}.\frac{a^2b}{a^2-2ab}\)
\(P=\frac{b\left(a^2-4b^2\right)}{3ab^2}.\frac{a^2b}{a\left(a-2b\right)}\)
\(P=\frac{b\left(a-2b\right)\left(a+2b\right)}{3ab^2}.\frac{a^2b}{a\left(a-2b\right)}\)
\(P=\frac{b\left(a+2b\right)}{3b}.\frac{a}{a}\)
\(P=\frac{a+2b}{3}\)
P=\(\frac{a^2b.b\left(a^2-4b^2\right)}{3ab^2.a\left(a-2b\right)}=\frac{a^2b^2\left(a-2b\right)\left(a+2b\right)}{3a^2b^2\left(a-2b\right)}\)
=> P=\(\frac{a+2b}{3}\)
Tìm x biết rằng \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Ta có: 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=> y=1/4
thay y=1/4 vào đề ta có:
(1+ 1/2)/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=> 12(5/2)=6x
=>30=6x
=>x=5
Vậy x=5
y=1/4
TÌM X BIẾT RẰNG:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{x}\)
a) Chứng minh hằng đẳng thức sau :
\(\frac{1}{a-2b}+\frac{6b}{4b^2-a^2}-\frac{2}{a+2b}=-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)\)
b) Chứng minh hằng đẳng thức Ơle sau :
\(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng
cho a,b,c > 0 thỏa mãn \(\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}\ge1\)
Cmr: \(\frac{1}{6a+1}+\frac{1}{6b+1}+\frac{1}{6c+1}\ge\frac{3}{7}\)
Đặt \(\left(\frac{1}{2a+1};\frac{1}{2b+1};\frac{1}{2c+1}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)
Mặt khác do \(a;b;c>0\Rightarrow x;y;z< 1\)
Ta có: \(P=\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)
Ta có đánh giá: \(\frac{x}{3-2x}\ge\frac{27x-2}{49}\) \(\forall x\in\left(0;1\right)\)
\(\Leftrightarrow9x^2-6x+1\ge0\Leftrightarrow\left(3x-1\right)^2\ge0\) (luôn đúng)
Thiết lập tương tự và cộng lại:
\(P\ge\frac{27\left(x+y+z\right)-6}{49}\ge\frac{21}{49}=\frac{3}{7}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=1\)