Những câu hỏi liên quan
NB
Xem chi tiết
NQ
10 tháng 10 2021 lúc 7:30

ta có :

undefined

Bình luận (0)
 Khách vãng lai đã xóa
MB
Xem chi tiết
TC
13 tháng 7 2023 lúc 20:28

\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

\(=c\left(a-b\right)^2+\left[ab^2+ac^2+a^2b+bc^2-a^3-b^3-c^3\right]\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)+ab^2+a^2b-a^3-b^3\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a^3-a^2b\right)+\left(ab^2-b^3\right)\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-a^2\left(a-b\right)+b^2\left(a-b\right)\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a+b\right)\left(a-b\right)^2\)

\(=-\left(a-b\right)^2\left(a+b-c\right)+c^2\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 3 2017 lúc 14:45

Bình luận (0)
NQ
Xem chi tiết
DH
2 tháng 4 2019 lúc 20:42

ko bt đâu thông cảm

Bình luận (0)
ZZ
2 tháng 4 2019 lúc 20:44

phân tích bằng đặt ẩn phụ=))

Ta có:\(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2\)

\(=\left(a^2+b^2+c^2\right)\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]+\left(ab+bc+ca\right)^2\)

Đặt:\(a^2+b^2+c^2=x;ab+bc+ca=y\),ta có:

\(x\left(x+2y\right)+y^2=x^2+2xy+y^2=\left(x+y\right)^2\)

Thay vào,ta được:\(\left(x+y\right)^2=\left(a^2+b^2+c^2+ab+bc+ca\right)^2\)

Bình luận (0)
DH
2 tháng 4 2019 lúc 21:07

wtf ko bt ma cung dí

Bình luận (0)
NL
Xem chi tiết
BB
Xem chi tiết
BB
5 tháng 8 2021 lúc 15:39

giups mình với nha

 

Bình luận (0)
TN
Xem chi tiết
H24
20 tháng 9 2020 lúc 13:19

 .\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)

=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)

=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)

=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
QB
Xem chi tiết
NT
24 tháng 8 2021 lúc 0:35

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

Bình luận (0)
HS
Xem chi tiết
NT
18 tháng 12 2021 lúc 19:50

\(=\left(b^2+c^2+2bc-a^2\right)\left(b^2+c^2-2bc-a^2\right)\)

\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)

Bình luận (0)