Những câu hỏi liên quan
PB
Xem chi tiết
CT
14 tháng 1 2018 lúc 17:20

7520 = 4510.530

Ta có: 4510.530 = (9.5)10.530 = 910.510.530 = (32)10.540

=320.(52)20 = 320.2520 = (3.25)20 = 7520

Vế phải bằng vế trái nên đẳng thức được chứng minh

Bình luận (0)
H24
Xem chi tiết
LL
23 tháng 8 2021 lúc 9:54

Bài 8:

a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)

b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)

c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)

Bình luận (1)
TC
23 tháng 8 2021 lúc 9:59

undefinedundefined

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 11 2017 lúc 8:54

128.912 = 1816

Ta có: 128.912 = (4.3)8.912 =48.38.912 =(22)8.(32)4.912

= 216.94.912 = 216.916= (2.9)16 = 1816

Vế trái bằng vế phải nên đẳng thức được chứng minh

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 7 2023 lúc 23:59

a: (sina+cosa)^2

=sin^2a+cos^2a+2*sina*cosa

=1+sin2a

b: \(cos^4a-sin^4a=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\)

\(=cos^2a-sin^2a=cos2a\)

Bình luận (0)
BH
Xem chi tiết
H9
16 tháng 8 2023 lúc 6:39

a) Ta có:

\(VT=\left(a-b\right)^2\)

\(=a^2-2\cdot a\cdot b+b^2\)

\(=a^2-2ab+b^2\)

\(=a^2-4ab+2ab+b^2\)

\(=\left(a^2+2ab+b^2\right)-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)

⇒ Đpcm

b) Ta có:

\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

\(=2x^2+0+2y^2\)

\(=2x^2+2y^2\)

\(=2\left(x^2+y^2\right)=VP\)

⇒ Đpcm

Bình luận (0)
NT
15 tháng 8 2023 lúc 22:27

a: (a-b)^2

=a^2-2ab+b^2

=a^2+2ab+b^2-4ab

=(a+b)^2-4ab

b: (x+y)^2+(x-y)^2

=x^2+2xy+y^2+x^2-2xy+y^2

=2x^2+2y^2

=2(x^2+y^2)

Bình luận (0)
MV
Xem chi tiết
NT
19 tháng 8 2021 lúc 21:01

a: Ta có: \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4\sqrt{6}}{2}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{2}\)

Bình luận (0)
H24
Xem chi tiết
BA
21 tháng 3 2022 lúc 21:20

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

Bình luận (0)
BA
21 tháng 3 2022 lúc 21:25

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

Bình luận (0)
H24
Xem chi tiết
QL
21 tháng 9 2023 lúc 20:46

a)    Ta có:

\(\begin{array}{l}{\sin ^4}\alpha  - {\cos ^4}\alpha  = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha  - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha  - {\cos ^2}\alpha  - 1 + 2{\cos ^2}\alpha  = 0\\ \Leftrightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)

Đẳng thức luôn đúng

b)    Ta có:

\(\begin{array}{l}\tan \alpha  + \cot \alpha  = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)

Đẳng thức luôn đúng

Bình luận (0)
H24
Xem chi tiết
H24
21 tháng 1 2022 lúc 21:29

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:16

a) Ta có: \({\left( {\sin \alpha  + \cos \alpha } \right)^2} = {\sin ^2}\alpha  + 2\sin \alpha \cos \alpha  + {\cos ^2}\alpha  = 1 + \sin 2\alpha \;\)

b) \({\cos ^4}\alpha  - {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)

Bình luận (0)