Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 4 2019 lúc 4:12

Đáp án: C

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Đường cao kẻ từ A của tam giác ABC là đường thẳng đi qua A và nhận vecto BC là vecto pháp tuyến

⇒ d: 2(x - 0) + (y + 3) = 0 ⇔ 2x + y + 3 = 0

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 10 2019 lúc 8:01

Ta có: AB → = (−a; b; 0) và  AC →  = (−a; 0; c)

Vì  AB → .  AC →  = a 2 > 0 nên góc BAC là góc nhọn.

Lập luận tương tự ta chứng minh được các góc  ∠ B và  ∠ C cũng là góc nhọn.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 7 2019 lúc 8:17

Chọn A

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 6 2019 lúc 7:44

Chọn A

Bình luận (0)
HB
Xem chi tiết
NL
Xem chi tiết
NT
22 tháng 3 2017 lúc 15:57

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 10 2017 lúc 9:02

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 9 2018 lúc 6:37

Bình luận (0)
NT
Xem chi tiết
NL
21 tháng 3 2021 lúc 15:53

Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 2 2022 lúc 22:42

Thay tọa độ A vào 2 pt trung tuyến đều không thỏa mãn

\(\Rightarrow\) 2 trung đó đó xuất phát từ B và C, giả sử trung tuyến xuất phát từ B có pt x-2y+1=0 và từ C có pt y=1

\(\Rightarrow B\left(2b-1;b\right)\) ; \(C\left(c;1\right)\)

Gọi G là trọng tâm tam giác \(\Rightarrow\) G là giao điểm 2 trung tuyến nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-2y+1=0\\y=1\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}1+2b-1+c=3.1\\3+b+1=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2b+c=3\\b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-1\\c=5\end{matrix}\right.\)

\(\Rightarrow B\left(-3;-1\right)\) ; \(C\left(5;1\right)\)

Biết 3 tọa độ 3 đỉnh của tam giác, dễ dàng viết được phương trình các cạnh

Bình luận (0)