Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DT
Xem chi tiết
SK
11 tháng 9 2023 lúc 9:30

Ta có: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\)=\(2a+2b\le2\)

\(Max\)\(M=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+\sqrt{b}\\a+b=1\end{matrix}\right.\)\(\Leftrightarrow a=b=\dfrac{1}{2}\)

Bình luận (0)
NT
11 tháng 9 2023 lúc 10:37

\(M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2;a+b\le1\left(a;b>0\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số \(\left(1;\sqrt[]{a}\right);\left(1;\sqrt[]{b}\right)\)

\(M=\left(1.\sqrt[]{a}+1.\sqrt[]{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)  \(\left(a+b\le1\right)\)

\(\Rightarrow M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2\le2\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{1}{\sqrt[]{a}}=\dfrac{1}{\sqrt[]{b}}\Leftrightarrow a=b=1\)

\(\Rightarrow GTLN\left(M\right)=2\left(khi.a=b=1\right)\)

Bình luận (3)
NT
11 tháng 9 2023 lúc 11:39

Đính chính \(a=b=\dfrac{1}{2}\)

Bình luận (0)
NN
Xem chi tiết
NN
2 tháng 8 2016 lúc 9:51

trả lời giúp mk với 

Bình luận (0)
MM
7 tháng 8 2016 lúc 20:58

chịu , hổng bt lun ak

Bình luận (0)
H24
7 tháng 8 2016 lúc 22:10

A lớn nhất khi 2(x-1)^2 + 3 nhỏ nhất Vậy A lớn nhất là 1/3 khi x = 1

Bình luận (0)
DP
Xem chi tiết
VT
10 tháng 8 2016 lúc 11:17

\(M=\frac{7}{\left(x+1\right)^2+1}\)

M đạt GTLN 

\(\Leftrightarrow\left(x+1\right)^2+1\) đạt GTNN

\(\left(x+1\right)^2\ge0\)

\(\left(x+1\right)^2+1\ge1\)

\(\frac{7}{\left(x+1\right)^2+1}\le7\)

Vậy \(MAX_M=7\) 

Khi \(x+1=0\)

        \(x=-1\)

Bình luận (0)
HN
10 tháng 8 2016 lúc 11:17

Ta có : \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1\)

\(\Rightarrow\frac{1}{\left(x+1\right)^2+1}\le1\) \(\Rightarrow\frac{7}{\left(x+1\right)^2+1}\le7\)

Dấu "=" xảy ra khi và chỉ khi x = -1

Vậy M đạt giá trị lớn nhất bằng 7 tại x = -1

Bình luận (0)
LF
10 tháng 8 2016 lúc 11:19

Để  M lớn nhất 

=>(x+1)2+1 nhỏ nhất

Ta thấy:\(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+1\ge0+1=1\)

Suy ra MaxM=\(\frac{7}{1}=7\) khi (x+1)2=0 <=>x=-1

Vậy MaxM=7 khi x=-1

Bình luận (0)
KC
Xem chi tiết
NM
Xem chi tiết
TN
17 tháng 6 2016 lúc 11:06

a)Ta thấy:

\(-\left|\frac{1}{3}x+2\right|\le0\)

\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)

\(\Rightarrow B\le5\)

Dấu "=" xảy ra khi x=-6

Vậy MaxB=5<=>x=-6

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:

\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)

Vậy MinC=2<=>x=6 hoặc -10

Bình luận (0)
NH
Xem chi tiết
NV
Xem chi tiết
BO
9 tháng 1 2017 lúc 14:45

A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)

A nhỏ nhất khi x - 7 =  3 => x = 10

A lơn nhất khi x - 7 = -3 => x = 4

Bình luận (0)
NV
9 tháng 1 2017 lúc 15:10

thanks very much

Barack Obama

Bình luận (0)
H24
9 tháng 1 2017 lúc 16:06

 \(GTNNA=-\frac{3}{7}\) KHi x=8

GTLN của A=3 khi x=6

Bình luận (0)
TU
Xem chi tiết
NT
18 tháng 9 2018 lúc 19:37

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

Bình luận (0)
PV
18 tháng 9 2018 lúc 19:39

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

Bình luận (0)
DC
Xem chi tiết
H24
15 tháng 7 2018 lúc 23:01

13/6

mk học lớp 6 nên ko rõ

Bình luận (0)
BT
16 tháng 7 2018 lúc 10:26

Cho mi nek:

Bộ sưu tập hình nền Fanart Rem (Re:Zero) siêu dễ thương | Cotvn.NetKawaii Anime

Bình luận (0)
SM
8 tháng 8 2019 lúc 21:11

Dơn giản nhất là:...

Tính máy tính thui!

Bình luận (0)