tìm số ab thỏa:ab2 =(a+b)3
Cho ab là số tự nhiên có 2 chữ số :
a) Biết rằng số ab chia hết cho 9 và chia 5 dư 3. Tìm các chữ số a ; b
b) Tìm các chữ số a ; b ; c sao cho cab = 3 x ab + 8
a, vì a,b chia 5 dưa 3 nên b = 3 hoặc 8
vì a,b chia hết cho 9 suy ra a + b chia hết cho 9
với b = 3 thì 3 + a chia hết cho 9 -> a = 6
với a = 8 thì 8 + a chia hết chi 9 -> a = 1
vây a = 6 và b = 3
hoặc a = 1 ; b = 8
Cho ab là số tự nhiên có hai chữ số.
a, Biết ab chia hết cho 3 ; chia cho 5 dư 1. Tìm các chữ số a, b.
b, Biết rằng nếu lấy số ab chia cho số ba thì được thương là 3 và số dư là 13. Tìm a, b.
số đó là :
3x3+13=sai đề là cái chắc
Tìm số có hai chữ số ab biết (ab)\(^2\)=(a+b)\(^3\)
Bài 2
a> Tìm các số x,y thỏa mãn: x−13=y+25=x+y+1x−2x−13=y+25=x+y+1x−2
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=2x+1x−32x+1x−3
c> Tìm số có 2 chữ số ¯¯¯¯¯abab¯ biết: (¯¯¯¯¯ab)2(ab¯)2=(a+b)3(a+b)3
¯¯¯¯¯ab
Tìm ab sao cho:(ab)^2=(a+b)^3 (ab là số có 2 chữ số)
-> \(\overline{ab}\)là số lập phương đúng.
-> \(\overline{ab}\)có thể là 27 hoặc 64.
TH1: ab = 27
->272=(33)2=36.
(2+7)3=93=(32)3=36 (chọn)
TH2: ab = 64
->642 có chữ số tận cùng là 6
(6+4)3=103=1000 (loại)
->ab=27
1) Tìm hai số tự nhiên a, b > 0, biết ab = 216 và (a, b) = 6.
2) Tìm hai số tự nhiên a, b > 0, biết [a, b] = 240 và (a, b) = 16.
3) Tìm hai số tự nhiên a, b > 0, biết ab = 180, [a, b] = 60.
em thấy cj Trà My lm đúng á
tìm số tự nhiên ab sao cho ab^2=(a+b)^3
Tìm a,b là số nguyên sao cho
a) (a - 3)b - a = 5
b) ab - a 3b - 3 = 5
a: =>ab-3b-a=5
=>a(b-1)-3b+3=8
=>(b-1)(a-3)=8
=>\(\left(a-3;b-1\right)\in\left\{\left(1;8\right);\left(8;1\right);\left(-1;-8\right);\left(-8;-1\right);\left(2;4\right);\left(4;2\right);\left(-2;-4\right);\left(-4;-2\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(4;9\right);\left(11;2\right);\left(2;-7\right);\left(-5;0\right);\left(5;5\right);\left(7;3\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)
b: =>ab-3b-3=5
=>b(a-3)=8
=>\(\left(a-3;b\right)\in\left\{\left(1;8\right);\left(8;1\right);\left(-1;-8\right);\left(-8;-1\right);\left(2;4\right);\left(4;2\right);\left(-2;-4\right);\left(-4;-2\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(4;8\right);\left(11;1\right);\left(2;-8\right);\left(-5;-1\right);\left(5;4\right);\left(7;2\right);\left(1;-4\right);\left(-1;-2\right)\right\}\)
Cho a và b là các số khác 0 thỏa mãn: \(ab\left(a+b\right)=a^2+b^2-ab\)
Tìm Max của: \(A=\dfrac{1}{a^3}+\dfrac{1}{b^3}\)
\(ab\left(a+b\right)=a^2+b^2-ab\Rightarrow ab=\dfrac{a^2+b^2-ab}{a+b}\)
\(A=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{a^3b^3}=\dfrac{\left(a+b\right)ab\left(a+b\right)}{a^3b^3}=\dfrac{\left(a+b\right)^2}{a^2b^2}\)
\(=\left(\dfrac{a+b}{ab}\right)^2=\left(\dfrac{a+b}{\dfrac{a^2+b^2-ab}{a+b}}\right)^2=\left(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\right)^2\)
Ta có: \(a^2+b^2-ab>0;\forall a;b\ne0\Rightarrow\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\ge0\)
\(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}=\dfrac{a^2+b^2+2ab}{a^2+b^2-ab}=\dfrac{4\left(a^2+b^2-ab\right)-3\left(a^2+b^2-2ab\right)}{a^2+b^2-ab}=4-\dfrac{3\left(a-b\right)^2}{a^2+b^2-ab}\le4\)
\(\Rightarrow0\le\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\le4\)
\(\Rightarrow A\le16\)
\(A_{max}=16\) khi \(a=b=\dfrac{1}{2}\)
tìm số ab biết a-b=3 và ab+ba=77
Ta có : ab + ba = 11(a + b)
=> 11(a + b) = 77
=> a + b = 7
=> a + b + a - b = 7 + 3
=> 2a = 10
=> a = 5
=> b = 2