Những câu hỏi liên quan
NT
Xem chi tiết
VV
12 tháng 6 2017 lúc 12:05

do abc=1 nên \(\frac{a}{ab+a+1}\)=\(\frac{a}{ab+a+abc}\)=\(\frac{a}{a\left(bc+b+1\right)}\)=\(\frac{1}{bc+b+1}\)

\(\frac{c}{ac+c+1}\)=\(\frac{bc}{abc+bc+b}\)(nhân cả 2 vế cho b)=\(\frac{bc}{bc+b+1}\)

=>\(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)=\(\frac{bc+b+1}{bc+b+1}\)=1

Bình luận (0)
TM
Xem chi tiết
TM
18 tháng 12 2017 lúc 17:58

bài này easy thôi:

chia cả 2 vế cho 2 ta được:

\(P=\frac{a}{ab+a+1}+\frac{b}{bc+c+1}+\frac{c}{ac+c+1}=1\)

Thật vậy:ta có:\(abc=1\Leftrightarrow a=\frac{1}{bc}\)

\(\Rightarrow P=\frac{\frac{1}{bc}}{\frac{1}{bc}b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{bc}+c+1}\)

\(=\frac{\frac{1}{bc}}{\frac{1}{c}+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)

\(=\frac{\frac{1}{bc}}{\frac{b+1+bc}{bc}}+\frac{b}{bc+b+1}+\frac{c}{\frac{bc+1+b}{b}}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)

\(\Rightarrowđpcm\)

Bình luận (0)
MN
Xem chi tiết
HN
25 tháng 10 2016 lúc 11:21

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)

Bình luận (0)
MN
25 tháng 10 2016 lúc 15:00

ko thích trả lời

Bình luận (0)
SL
Xem chi tiết
TT
Xem chi tiết
NL
18 tháng 11 2019 lúc 15:02

\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
TL
15 tháng 8 2020 lúc 21:06

a) ta có \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\Rightarrow\frac{a}{\sin A}=\frac{b+c}{\sin B+\sin C}=\frac{2a}{\sin B+\sin C}\)

do đó \(2a\cdot\sin A=a\left(\sin B+\sin C\right)\)

\(\Rightarrow2\sin A=\sin B+\sin C\)

b) ta có \(\frac{2}{h_a}=\frac{2a}{h_a\cdot a}=\frac{2a}{2S_{ABC}}=\frac{a}{S_{ABC}}\left(1\right)\)

\(\frac{1}{h_b}+\frac{1}{h_c}=\frac{b}{h_b\cdot b}+\frac{c}{h_c\cdot c}=\frac{b}{2S_{ABC}}+\frac{c}{2S_{ABC}}=\frac{b+c}{2S_{ABC}}=\frac{2a}{2S_{ABC}}=\frac{a}{S_{ABC}}\left(2\right)\)

từ (1) và (2) \(\Rightarrow\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết