Những câu hỏi liên quan
HA
Xem chi tiết
NL
12 tháng 10 2020 lúc 12:28

\(A=sinx.cosx+\frac{1-cos^2x}{1+\frac{cosx}{sinx}}+\frac{1-sin^2x}{1+\frac{sinx}{cosx}}\)

\(=sinx.cosx+\frac{\left(sinx-sinx.cosx\right)\left(1+cosx\right)}{1+cosx}+\frac{\left(cosx-sinx.cosx\right)\left(1+sinx\right)}{1+sinx}\)

\(=sinx.cosx+sinx-sinx.cosx+cosx-sinx.cosx\)

\(=sinx+cosx-sinx.cosx\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NC
Xem chi tiết
NC
5 tháng 11 2019 lúc 16:10

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

Bình luận (0)
 Khách vãng lai đã xóa
NL
6 tháng 11 2019 lúc 8:34

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

Bình luận (0)
 Khách vãng lai đã xóa
MK
Xem chi tiết
HN
29 tháng 4 2020 lúc 21:32

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

Bình luận (0)
KY
Xem chi tiết
NV
16 tháng 7 2016 lúc 20:07

a/ Tớ làm bên dưới rồi

b/ \(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=\frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{\frac{sin^2x}{sin^2x}}=1+cot^2x\)(đpcm)

c/ \(\frac{1}{tanx+1}+\frac{1}{cotx+1}=\frac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}=\frac{tanx+cotx+2}{tanx.cotx+tanx+cotx+1}\)

     \(=\frac{tanx+cotx+2}{tanx+cotx+2}=1\left(đpcm\right)\)

d/ \(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=\frac{tan^2x}{sin^2x}-\frac{cos^2x}{sin^2x}+\left(\frac{cot^2x}{cos^2x}-\frac{sin^2x}{cos^2x}\right)\)

    \(=\frac{\frac{sin^2x}{cos^2x}}{sin^2x}-\frac{cos^2x}{sin^2x}+\frac{\frac{cos^2x}{sin^2x}}{cos^2x}-\frac{sin^2x}{cos^2x}\)

      \(=\frac{1}{cos^2x}-cot^2x+\frac{1}{sin^2x}-tan^2x\)

        \(=1+tan^2x-cot^2x+\left(1+cot^2x\right)-tan^2x\)

        \(=1+tan^2x-cot^2x+1+cot^2x-tan^2x=2\left(đpcm\right)\)

Bình luận (0)
KY
17 tháng 7 2016 lúc 7:07

giúp e câu nỳ vs e cần gấp

Tìm X biết:

TanX+CosX=2

Bình luận (0)
NT
Xem chi tiết
JE
Xem chi tiết
NL
27 tháng 8 2020 lúc 23:04

a/

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)=2sinx.cosx-sinx\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)-sinx\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx-sinx\right)=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx+cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
27 tháng 8 2020 lúc 23:06

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)

Bình luận (0)
NL
27 tháng 8 2020 lúc 23:10

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 8 2023 lúc 19:23

\(a,1+tan^2x=\dfrac{1}{cos^2x}\\ VT=1+\dfrac{sin^2x}{cos^2x}\\ =\dfrac{cos^2x}{cos^2x}+\dfrac{sin^2x}{cos^2x}\\ =\dfrac{sin^2x+cos^2x}{cos^2x}=\dfrac{1}{cos^2x}=VP\)

\(b,VT=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\\ =\dfrac{sin^2x+cos^2x}{cosx.sinx}=\dfrac{1}{cosx.sinx}=VP\)

Bình luận (0)
NL
Xem chi tiết
NL
17 tháng 9 2020 lúc 16:07

\(N=\frac{\frac{3sin^2x}{cos^2x}+\frac{12sinx.cosx}{cos^2x}+\frac{cos^2x}{cos^2x}}{\frac{sin^2x}{cos^2x}+\frac{sinx.cosx}{cos^2x}-\frac{2cos^2x}{cos^2x}}=\frac{3tan^2x+12tanx+1}{tan^2x+tanx-2}=...\)

Bình luận (0)