H24

chứng minh đẳng thức lượng giác

a) 1+ \(tan^{^{ }2}\)x = \(\dfrac{1}{cos^2x}\)

b) \(tanx\) + \(cotx\) = \(\dfrac{1}{sinx.cosx}\)

H24
18 tháng 8 2023 lúc 19:23

\(a,1+tan^2x=\dfrac{1}{cos^2x}\\ VT=1+\dfrac{sin^2x}{cos^2x}\\ =\dfrac{cos^2x}{cos^2x}+\dfrac{sin^2x}{cos^2x}\\ =\dfrac{sin^2x+cos^2x}{cos^2x}=\dfrac{1}{cos^2x}=VP\)

\(b,VT=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\\ =\dfrac{sin^2x+cos^2x}{cosx.sinx}=\dfrac{1}{cosx.sinx}=VP\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết