Những câu hỏi liên quan
TM
Xem chi tiết
DV
10 tháng 6 2016 lúc 8:19

a) (Nếu là tính M khi x = 1)

\(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)

b) Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)

=> \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> \(x=\frac{1}{2}\)

Bình luận (0)
PK
9 tháng 6 2016 lúc 15:49

a) Tính M khi x - 1 là sao bạn ?

Bình luận (0)
TM
10 tháng 6 2016 lúc 9:39

nhầm rồi bạn :P Tính M khi x=1

 

Bình luận (0)
TM
Xem chi tiết
DV
10 tháng 6 2016 lúc 12:54

a) Khi x = 1 thì \(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)

b) Ta có \(\left|x-\frac{1}{2}\right|\ge0\)

\(\Rightarrow\left|x-\frac{1}{2}\right|\) \(+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> x = \(\frac{1}{2}\)

Bình luận (0)
PT
Xem chi tiết
QS
Xem chi tiết
NA
Xem chi tiết
AH
29 tháng 5 2020 lúc 0:08

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)

\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)

Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$

Bình luận (0)
AH
29 tháng 5 2020 lúc 0:08

Bài 2:

Hoàn toàn tương tự bài 1

$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky

$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$

Vậy GTNN của $S$ là $3$ khi $a=b=c=1$

Bình luận (0)
AH
29 tháng 5 2020 lúc 0:11

Bài 3:

Áp dụng BĐT Bunhiacopxky như các bài trên ta có:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$

Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=2$

Bài 4:

Áp dụng BĐT Cô-si cho các số dương ta có:

$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=d>0$

Bình luận (0)
HL
Xem chi tiết
NM
Xem chi tiết
LN
Xem chi tiết
NL
7 tháng 3 2020 lúc 22:19

1. ĐKXĐ: \(x>0\)

\(A=\sqrt{x}+\frac{1}{\sqrt{x}}-1\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{x}}}-1=2-1=1\)

\(A_{min}=1\) khi \(x=1\)

2. ĐKXĐ: \(x\ge0\)

\(x=\frac{4-2\sqrt{3}}{4}=\left(\frac{\sqrt{3}-1}{2}\right)^2\Rightarrow\sqrt{x}=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{\left(\frac{\sqrt{3}-1}{2}+1\right)^2}=\frac{8\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}=\frac{8\left(\sqrt{3}-1\right)^3}{4}=-20+12\sqrt{3}\)

\(P=\frac{1}{2}\Rightarrow\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)^2}=\frac{1}{2}\Leftrightarrow8\sqrt{x}=x+2\sqrt{x}+1\)

\(\Leftrightarrow x-6\sqrt{x}+1=0\Rightarrow\sqrt{x}=3\pm2\sqrt{2}\)

\(\Rightarrow x=17\pm12\sqrt{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
H24
18 tháng 9 2017 lúc 16:21

khó vậy

Bình luận (0)
H24
18 tháng 9 2017 lúc 16:32

bai nay mk thay rat kho vi mk ko thay co 1 quy luat nao ca

Bình luận (0)