\(\int_0^1\frac{2x}{x+1}dx\)
Giải chi tiết hộ với.Mình đang kb bậc tử bằng bậc mẫu làm thế nào
Tinh \(\int\frac{x}{2-x^2}\)dx
Chỉ hộ minh muốn tính nguyên hàm mà bậc tử nhỏ hơn bậc mẫu ta thương làm thế nào
Giải như sau:
Ta biết rằng \(d\left(u\left(x\right)\right)=u\left(x\right)'d\left(x\right)\)
\(\Rightarrow\int\frac{x}{2-x^2}dx=\frac{1}{2}\int\frac{d\left(x^2\right)}{2-x^2}=-\frac{1}{2}\int\frac{d\left(2-x^2\right)}{2-x^2}=-\frac{1}{2}ln\left|2-x^2\right|+c\)
P/s: Muốn tính nguyên hàm mà tử nhỏ hơn mẫu thứ nhất bạn có thể phan tích mẫu ra thành các nhân tử có bậc nhỏ như bậc của tử số, rồi từ đó đặt ẩn phụ hoặc tách ghép hợp lý. Thứ 2 là bạn có thể sử dụng phương pháp $d(u(x))=u(x)'dx$ để đưa ẩn về cùng một mối ( như cách mình giải bài này). Nói chung mình diễn đạt có thể không rõ ràng một chút nhưng chủ yếu bạn làm nhiều tìm tòi nhiều sẽ quen thôi :)
Muốn giải tích phân là phân thức và có bậc tử bằng bậc mẫu thỳ làm thế nào ạ.
lấy tử chia cho mẫu => tách ra làm bình thương thôi
nói ((((((chay)))))) thế này thì khó nói lắm
\(\int_0^{\frac{\Pi}{2}}c\text{os}^2x\left(1-sin^3x\right)dx\)
2) \(\int_0^{\frac{\Pi}{4}}\frac{sin\left(x-\frac{\Pi}{4}\right)}{sin2x+2\left(1+s\text{inx}+c\text{ox}\right)}dx\)
hộ mk vs nha
1)
\(I=\int\left(cos^2x-cos^2x\cdot sin^3x\right)dx\\ =\int cos^2x\cdot dx-\int cos^2x\cdot sin^3x\cdot dx\\ =\frac{1}{2}\int\left(cos2x+1\right)dx+\int cos^2x\left(1-cos^2x\right)d\left(cosx\right)\\ =\frac{1}{4}sin2x+\frac{1}{2}+\frac{cos^3x}{3}-\frac{cos^5x}{5}+C\)
....
2) Xét riêng mẫu số:
\(sin2x+2\left(1+sinx+cosx\right)\\ =\left(sin2x+1\right)+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx\right)^2+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx+1\right)^2\\ =\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2\)
Khi đó:
\(I_2=\int\frac{sin\left(x-\frac{\pi}{4}\right)}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}dx\\ =-\frac{1}{\sqrt{2}}\int\frac{d\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}\\ =\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1}+C=\frac{1}{2cos\left(x-\frac{\pi}{4}\right)+1}\)
...
I=\(\int_0^1\)\(\frac{dx}{\sqrt{3+2x-x^2}}\)
J=\(\int_0^1\)xln(2x+1)dx
K=\(\int_0^1\)\(ln\left(x^3-3x+2\right)dx\)
1)\(\int_1^e\left(\frac{lnx}{x}\right)^2dx\)
2)\(\int_0^{\frac{\pi}{4}}\frac{x}{1+cos2x}dx\)
3)\(\int_0^{\frac{\pi}{4}}\frac{ln\left(cosx\right)}{cos^2x}dx\)
Câu 1)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)
\(\int \left ( \frac{\ln}{x} \right )^2dx=\frac{-\ln^2x}{x}+2\int \frac{\ln x}{x^2}dx\)
Đặt \(\left\{\begin{matrix} t=\ln x\\ dk=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dt=\frac{1}{x}dx\\ k=-\frac{1}{x}\end{matrix}\right.\Rightarrow \int \frac{\ln x}{x^2}dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx=\frac{-\ln x}{x}-\frac{1}{x}\)
\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|\left(\frac{-\ln^2 x}{x}-\frac{2\ln x}{x}-\frac{2}{x}\right)=2-\frac{5}{e}\)
Câu 2)
\(I=\int ^{\frac{\pi}{4}}_{0}\frac{x}{1+\cos 2x}dx=\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{x}{\cos^2x}dx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\tan x\end{matrix}\right.\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{x\tan x}{2}-\frac{1}{2}\int^{\frac{\pi}{4}}_{0} \tan xdx\)
\(=\frac{\pi}{8}+\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{d(\cos x)}{\cos x}=\frac{\pi}{8}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{\ln |\cos x|}{2}=\frac{\pi}{8}+\frac{\ln\frac{\sqrt{2}}{2}}{2}\)
Câu 3)
Đặt \(\left\{\begin{matrix} u=\ln (\cos x)\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{-\sin x}{\cos x}dx=-\tan xdx\\ v=\tan x\end{matrix}\right.\)
\(\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\tan x\ln (\cos x)+\int ^{\frac{\pi}{4}}_{0}\tan^2xdx=\ln \frac{\sqrt{2}}{2}+\int ^{\frac{\pi}{4}}_{0}(\frac{1}{\cos^2x}-1)dx\)
\(=\ln\frac{\sqrt{2}}{2}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|(\tan x-x)=\ln \frac{\sqrt{2}}{2}-\frac{\pi}{4}+1\)
Tìm x biết
a) căn bậc hai 2x-1 = 3 ( x lớn hơn hoặc bằng 1/2)
b) căn bậc hai 4x - 1 - căn bậc hai 2x+7=0
MÌNH ĐANG CẦN GẤP! LÀM XONG NHANH ĐÚNG VÀ ĐẦU TIÊN MÌNH TRẢ 6 TICK!
Cho 2 phân thức: \(\frac{x^3-x^2-x+1}{x^4-2x^2+1};\frac{5x^3+10x^2+5x}{x^3+3x^2+3x+1}.\) . Hãy tìm cặp p/t như thế với mẫu thức là đa thức có bậc thấp nhất.
( Giải nhanh lên giùm mk với, 2 tick cho ai làm nhanh nhất)
1.\(\int_0^1x\left(e^{2x^{ }}-\frac{x^2}{\sqrt{4-x^2}}\right)dx\)
2.Giải pt \(\sin\left(2x+\frac{\pi}{2}\right)+\cos x-\sin x=0\)
Tính các tích phân sau:
a) \(\int_0^1x^3\sqrt{1-x^2}dx\)
b) \(\int_1^2\dfrac{dx}{x^2-2x+2}\)
c) \(\int_1^2\dfrac{dx}{\sqrt{4-x^2}}\)
d) \(\int_0^1x\sqrt{x^2+1}dx\)
a.
Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)
\(=\dfrac{2}{15}\)
b.
\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)
Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)
\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)
c.
\(\int\limits^2_1\dfrac{dx}{\sqrt{4-x^2}}\)
Đặt \(x=2sinu\Rightarrow dx=2cosu.du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=\dfrac{\pi}{6}\\x=2\Rightarrow u=\dfrac{\pi}{2}\end{matrix}\right.\)
\(I=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{\sqrt{4-4sin^2u}}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{2cosu}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}du\)
\(=u|^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}=\dfrac{\pi}{3}\)