Những câu hỏi liên quan
TO
Xem chi tiết
DN
Xem chi tiết
DN
28 tháng 10 2023 lúc 18:33

minh tag dung cho

 

Bình luận (0)
H9
28 tháng 10 2023 lúc 18:47

BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)

\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)

\(=\left|x-1\right|+\left|5-x\right|\)

Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)

Vậy: \(m_{min}=4\)

Bình luận (0)
TD
Xem chi tiết
NM
Xem chi tiết
AK
26 tháng 9 2021 lúc 11:36

 x2-2x+5

=x2-2x+1+4

=(x-1)2+4

Vì: (x−1)2≥0⇒(x−1)2+4≥4

Min = 4 khi x=1

Bình luận (0)
 Khách vãng lai đã xóa
GP
Xem chi tiết
NQ
Xem chi tiết
DL
16 tháng 12 2015 lúc 21:34

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

Bình luận (0)
DV
16 tháng 12 2015 lúc 21:34

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

Bình luận (0)
DM
Xem chi tiết
NC
Xem chi tiết
SG
27 tháng 8 2016 lúc 12:03

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

Bình luận (0)
LA
27 tháng 8 2016 lúc 12:07

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

Bình luận (0)
TH
27 tháng 8 2016 lúc 12:15

1﴿ Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

k nha bị âm r

Bình luận (0)
H24
Xem chi tiết
DH
1 tháng 11 2017 lúc 19:31

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

Bình luận (0)